Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Tests of vestibular system (balance) function include electronystagmography (ENG), Videonystagmograph (VNG), rotation tests, Computerized Dynamic Posturography (CDP), and Caloric reflex test.
Tests of auditory system (hearing) function include pure-tone audiometry, speech audiometry, acoustic-reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and auditory brainstem response test (ABR; also known as BER, BSER, or BAER).
Other diagnostic tests include magnetic resonance imaging (MRI) and computerized axial tomography (CAT, or CT).
The difficulty of making the right vestibular diagnosis is reflected in the fact that in some populations, more than one third of the patients with a vestibular disease consult more than one physician – in some cases up to more than fifteen.
Diagnosis of a balance disorder is complicated because there are many kinds of balance disorders and because other medical conditions—including ear infections, blood pressure changes, and some vision problems—and some medications may contribute to a balance disorder. A person experiencing dizziness should see a physiotherapist or physician for an evaluation. A physician can assess for a medical disorder, such as a stroke or infection, if indicated. A physiotherapist can assess balance or a dizziness disorder and provide specific treatment.
The primary physician may request the opinion of an otolaryngologist to help evaluate a balance problem. An otolaryngologist is a physician/surgeon who specializes in diseases and disorders of the ear, nose, throat, head, and neck, sometimes with expertise in balance disorders. He or she will usually obtain a detailed medical history and perform a physical examination to start to sort out possible causes of the balance disorder. The physician may require tests and make additional referrals to assess the cause and extent of the disruption of balance. The kinds of tests needed will vary based on the patient's symptoms and health status. Because there are so many variables, not all patients will require every test.
MdDS is diagnosed several ways, one being by the symptoms: in particular, the "constant rocking, swaying feeling" and the abatement of this feeling when in motion again and as a matter of exclusion. There are no definitive tests that confirm MdDS, only tests that rule out other conditions. Tests include hearing and balance, and MdDS is generally diagnosed by either a neurologist or an ear nose & throat specialist.
Since lateral medullary syndrome is often caused by a stroke, diagnosis is time dependent. Diagnosis is usually done by assessing vestibular-related symptoms in order to determine where in the medulla that the infarction has occurred. Head Impulsive Nystagmus Test of Skew (HINTS) examination of oculomotor function is often performed, along with computed tomography (CT) or magnetic resonance imaging (MRI) to assist in stroke detection. Standard stroke assessment must be done to rule out a concussion or other head trauma.
About 20–30% of the population report to have experienced dizziness at some point in the previous year.
The diagnostic criteria as of 2015 define definite MD and probable MD as follows:
Definite
1. Two or more spontaneous episodes of vertigo, each lasting 20 minutes to 12 hours
2. Audiometrically documented low- to medium-frequency sensorineural hearing loss in the affected ear on at least 1 occasion before, during, or after one of the episodes of vertigo
3. Fluctuating aural symptoms (hearing, tinnitus, or fullness) in the affected ear
4. Not better accounted for by another vestibular diagnosis
Probable
1. Two or more episodes of vertigo or dizziness, each lasting 20 minutes to 24 hours
2. Fluctuating aural symptoms (hearing, tinnitus, or fullness) in the reported ear
3. Not better accounted for by another vestibular diagnosis
A common and important symptom of MD is hypersensitivity to sounds. This hypersensitivity is easily diagnosed by measuring the loudness discomfort levels (LDLs).
Symptoms of MD overlap with migraine-associated vertigo (MAV) in many ways, but when hearing loss develops in MAV is usually in both ears, and this is rare in MD, and hearing loss generally does not progress in MAV as it does in MD.
People who have had a transient ischemic attack (TIA) and stroke can present with symptoms similar to MD, and in people at risk for stroke magnetic resonance imaging (MRI) should be conducted to exclude TIA or stroke, and as TIA is often a precursor to stroke, that risk should be managed.
Other vestibular conditions that should be excluded include vestibular paroxysmia, recurrent unilateral vestibulopathy, vestibular schwannoma, or a tumor of the endolymphatic sac.
For most balance and gait disorders, some form of displacement exercise is thought helpful (for example walking, jogging, or bicycling but not on a treadmill or stationary bicycle). This has not been well-studied in MdDS. Medications that suppress the nerves and brain circuits involved in balance (for example, the benzodiazepine clonazepam) have been noted to help and can lower symptoms, but it is not a cure. It is not known whether medication that suppress symptoms prolongs symptom duration or not. Vestibular therapy has not proved to be effective in treating MdDS.
Additional research is being undertaken into the neurological nature of this syndrome through imaging studies. The disorder remains incurable and permanent if the symptoms do not remit in a short period of time.
The presence of dehiscence can be detected by a high definition (0.6 mm or less) coronal CT scan of the temporal bone, currently the most reliable way to distinguish between superior canal dehiscence syndrome (SCDS) and other conditions of the inner ear involving similar symptoms such as Ménière's disease and perilymphatic fistula. Other diagnostic tools include the vestibular evoked myogenic potential or VEMP test, videonystagmography (VNG), electrocochleography (ECOG) and the rotational chair test. An accurate diagnosis is of great significance as unnecessary exploratory middle ear surgery may thus be avoided. Several of the symptoms typical to SCDS (e.g. vertigo and Tullio) may also be present singly or as part of Ménière's disease, sometimes causing the one illness to be confused with the other. There are reported cases of patients being affected by both Ménière's disease and SCDS concurrently.
As SCDS is a very rare and still a relatively unknown condition, obtaining an accurate diagnosis of this distressing (and even disabling) disease may take some time as many health care professionals are not yet aware of its existence.
Once diagnosed, the gap in the temporal bone can be repaired by surgical resurfacing of the affected bone or plugging of the superior semicircular canal. These techniques are performed by accessing the site of the dehiscence either via a middle fossa craniotomy or via a canal drilled through the transmastoid bone behind the affected ear. Bone cement has been the material most often used, in spite of its tendency to slippage and resorption, and a consequent high failure rate; recently, soft tissue grafts have been substituted.
From 3% to 11% of diagnosed dizziness in neuro-otological clinics are due to Meniere's. The annual incidence rate is estimated to be about 15/100,000 and the prevalence rate is about 218/100,000, and around 15% of people with Meniere's disease are older than 65. In around 9% of cases a relative also had MD, signalling that there may be a genetic predisposition in some cases.
The odds of MD are greater for people of white ethnicity, with severe obesity, and women. Several conditions are often comorbid with MD, including arthritis, psoriasis, gastroesophageal reflux disease, irritable bowel syndrome, and migraine.
The treatment for vestibular neuronitis depends on the cause. However, symptoms of vertigo can be treated in the same way as other vestibular dysfunctions with vestibular rehabilitation.
Diagnosis consists of a variety of tests, including but not limited to:
- Measurement of orthostatic blood pressure
- Coordination
- rapid, alternating movements
- stroking of heel from along the opposite shin from knee to ankle
- finger-to-nose testing.
- Primary sensory modalities are examined with the following methods, searching for focal sensory loss, graded distal sensory loss, or levels of decreased sensation, hyperesthesia or dysesthesia.
- light touch
- pin-prick
- temperature
- position
- vibration
- Focused gait examination, which examines stationary position and walking abnormalities. Walking generally exposes any faults within the complex neurological communication between systems as weight is shifted from one foot to the other.
Tests for vertigo often attempt to elicit nystagmus and to differentiate vertigo from other causes of dizziness such as presyncope, hyperventilation syndrome, disequilibrium, or psychiatric causes of lightheadedness. Tests of vestibular system (balance) function include: electronystagmography (ENG), Dix-Hallpike maneuver, rotation tests, head-thrust test, caloric reflex test, and computerized dynamic posturography (CDP).
The HINTS test, which is a combination of three physical exam tests that may be performed by physicians at the bedside has been deemed helpful in differentiating between central and peripheral causes of vertigo. The HINTS test involves: the horizontal head impulse test, observation of nystagmus on primary gaze, and the test of skew. CT scans or MRIs are sometimes used by physicians when diagnosing vertigo.
Tests of auditory system (hearing) function include pure tone audiometry, speech audiometry, acoustic reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and the auditory brainstem response test.
A number of specific conditions can cause vertigo. In the elderly, however, the condition is often multifactorial.
A recent history of underwater diving can indicate possibility of barotrauma or decompression sickness involvement, but does not exclude all other possibilities. The dive profile (which is frequently recorded by dive computer) can be useful to assess a probability for decompression sickness, which can be confirmed by therapeutic recompression.
Treatment for lateral medullary syndrome involves focusing on relief of symptoms and active rehabilitation to help patients return to their daily activities. Speech Therapy is a very common form of rehabilitation that many patients undergo. Depressed mood and withdrawal from society can be seen in patients following the initial onslaught of symptoms.
In more severe cases, a feeding tube may need to be inserted through the mouth or a gastrostomy may be necessary if swallowing is impaired. In some cases, medication may be used to reduce or eliminate residual pain. Some studies have reported success in mitigating the chronic neuropathic pain associated with the syndrome with anti-epileptics such as gabapentin. Long term treatment generally involves the use of antiplatelets like aspirin or clopidogrel and statin regimen for the rest of their lives in order to minimize the risk of another stroke. Warfarin is used if atrial fibrillation is present. Other medications may be necessary in order to suppress high blood pressure and risk factors associated with strokes. A blood thinner may be prescribed to a patient in order to break up the infarction and reestablish blood flow and to try to prevent future infarctions.
One of the most unusual and difficult to treat symptoms that occur due to Wallenberg syndrome are interminable, violent hiccups. The hiccups can be so severe that patients often struggle to eat, sleep and carry on conversations. Depending on the severity of the blockage caused by the stroke, the hiccups can last for weeks. Unfortunately there are very few successful medications available to mediate the inconvenience of constant hiccups.
For dysphagia symptoms, Repetitive transcranial magnetic stimulation has been shown to assist in rehabilitation. Overall, traditional stroke assessment and outcomes are used to treat patients, since lateral medullary syndrome is often a cause of a stroke in the lateral medulla.
Treatment for this disorder can be disconcerting because some individuals will always have residual symptoms due to the severity of the blockage as well as the location of the infarction. Two patients may present with the same initial symptoms right after the stroke has occurred, but after several months one patient may fully recover while the other is still severely handicapped. This variation in outcome may be due to but not limited to the size of the infarction, the location of the infarction, and how much damage resulted from it.
Definitive treatment depends on the underlying cause of vertigo. Ménière's disease patients have a variety of treatment options to consider when receiving treatment for vertigo and tinnitus including: a low-salt diet and intratympanic injections of the antibiotic gentamicin or surgical measures such as a shunt or ablation of the labyrinth in refractory cases.
Common drug treatment options for vertigo may include the following:
- Anticholinergics such as hyoscine hydrobromide (scopolamine)
- Anticonvulsants such as topiramate or valproic acid for vestibular migraines
- Antihistamines such as betahistine, dimenhydrinate, or meclizine, which may have antiemetic properties
- Beta blockers such as metoprolol for vestibular migraine
- Corticosteroids such as methylprednisolone for inflammatory conditions such as vestibular neuritis or dexamethasone as a second-line agent for Ménière's disease
All cases of decompression sickness should be treated initially with 100% oxygen until hyperbaric oxygen therapy (100% oxygen delivered in a high-pressure chamber) can be provided. Several treatments may be necessary, and treatment will generally be repeated until either all symptoms resolve, or no further improvement is apparent.
Typical treatments include combinations of head and eye movements, postural changes, and walking exercises. Specifically, exercises that may be prescribed include keeping eyes fixated on a specific target while moving the head, moving the head right to left at two targets at a significant distance apart, walking while keeping eyes fixated on a specific target, and walking while keeping eyes fixated on a specific target while also turning the head in different directions.
The main function behind repeating a combination of head and eye movements, postural changes and walking is that through this repetition, compensatory changes for the dysfunctions arising from peripheral vestibular structures may be promoted in the central vestibular system (brainstem and cerebellum).
Vestibular rehabilitation therapy is a highly effective way to substantially reduce or eliminate residual dizziness from labyrinthitis. VRT works by causing the brain to use already existing neural mechanisms for adaptation, neuroplasticity, and compensation.
Rehabilitation strategies most commonly used are:
- Gaze stability exercises – moving the head from side to side while fixated on a stationary object (aimed at assisting the eye to fixate during head rotation without the input from the lost canal vestibulo–ocular reflex) An advanced progression of this exercise would be walking in a straight line while looking side to side by turning the head.
- Habituation exercises – movements designed to provoke symptoms and subsequently reduce the negative vestibular response upon repetition. Examples of these include Brandt–Daroff exercises.
- Functional retraining – including postural control, relaxation, and balance training.
These exercises function by challenging the vestibular system. Progression occurs by increasing the amplitude of the head or focal point movements, increasing the speed of movement, and combining movements such as walking and head turning.
One study found that patients who believed their illness was out of their control showed the slowest progression to full recovery, long after the initial vestibular injury had healed. The study revealed that the patient who compensated well was one who, at the psychological level, was not afraid of the symptoms and had some positive control over them. Notably, a reduction in negative beliefs over time was greater in those patients treated with rehabilitation than in those untreated. "Of utmost importance, baseline beliefs were the only significant predictor of change in handicap at 6 months followup."
Since AIED symptoms are fairly common to many hearing loss disorders, it may be difficult to diagnose AIED without performing multiple medical tests. Some examples of these tests include:
- Hearing Tests for Progressive Hearing and Balance loss
- Audiometry (measure of hearing acuity and sound intensity)
- Rotatory Chair Test (determines if inner ear is responsible for balance loss)
- Electrocochleography (ECOG) (recording of electrical potential in inner ear due to sound)
- Blood Tests for General Autoimmune Diseases
- Erythrocyte sedimentation rate (test for inflammation)
- Rheumatoid Factor (indicator of autoimmune disorders)
There are also blood tests specific to inner ear disorders:
- Anti-cochlear antibody test (testing for antibodies against cochlear cells)
- Lymphocyte Transformation Assay (testing whether an individual has developed a T-cell response against a certain drug)
Though it has also been proposed that the use of anti heat shock protein 70 antibodies may be useful in the detection and diagnosis of AIED, there is not enough evidence to confirm the reliability of this method.
Clinical diagnosis is conducted on individuals with age onset between late teens and late forties who show the initial characteristics for the recessive autosomal cerebellar ataxia.
The following tests are performed:
- MRI brain screening for cerebellum atrophy.
- Molecular genetic testing for SYNE-1 sequence analysis.
- Electrophysiologic studies for polyneurotherapy
- Neurological examination
Prenatal diagnosis and preimplantation genetic diagnosis (PGD) can be performed to identify the mothers carrying the recessive genes for cerebellar ataxia.
Due to the condition's rarity, it is frequently misdiagnosed, often as cerebral palsy. This results in patients often living their entire childhood with the condition untreated.
The diagnosis of SS can be made from a typical history, a trial of dopamine medications, and genetic testing. Not all patients show mutations in the GCH1 gene (GTP cyclohydrolase I), which makes genetic testing imperfect.
Sometimes a lumbar puncture is performed to measure concentrations of biopterin and neopterin, which can help determine the exact form of dopamine-responsive movement disorder: early onset parkinsonism (reduced biopterin and normal neopterin), GTP cyclohydrolase I deficiency (both decreased) and tyrosine hydroxylase deficiency (both normal).
In approximately half of cases, a phenylalanine loading test can be used to show decreased conversion from the amino acid phenylalanine to tyrosine. This process uses BH4 as a cofactor.
During a sleep study (polysomnography), decreased twitching may be noticed during REM sleep.
An MRI scan of the brain can be used to look for conditions that can mimic SS (for example, metal deposition in the basal ganglia can indicate Wilson's disease or pantothenate kinase-associated neurodegeneration). Nuclear imaging of the brain using positron emission tomography (PET scan) shows a normal radiolabelled dopamine uptake in SS, contrary to the decreased uptake in Parkinson's disease.
Other differential diagnoses include metabolic disorders (such as GM2 gangliosidosis, phenylketonuria, hypothyroidism, Leigh disease) primarily dystonic juvenile parkinsonism, autosomal recessive early onset parkinsonism with diurnal fluctuation, early onset idiopathic parkinsonism, focal dystonias, dystonia musculorum deformans and dyspeptic dystonia with hiatal hernia.
- Diagnosis - main
- typically referral by GP to specialist Neurological Hospital e.g. National Hospital in London.
- very hard to diagnose as condition is dynamic w.r.t. time-of-day AND dynamic w.r.t. age of patient.
- correct diagnosis only made by a consultant neurologist with a complete 24-hour day-cycle observation(with video/film) at a Hospital i.e. morning(day1)->noon->afternoon->evening->late-night->sleep->morning(day2).
- patient with suspected SS required to walk in around hospital in front of Neuro'-consultant at selected daytime intervals to observe worsening walking pattern coincident with increased muscle tension in limbs.
- throughout the day, reducing leg-gait, thus shoe heels catching one another.
- diurnal affect of condition: morning(fresh/energetic), lunch(stiff limbs), afternoon(very stiff limbs), evening(limbs worsening), bedtime(limbs near frozen).
- muscle tension in thighs/arms: morning(normal), lunch(abnormal), afternoon(very abnormal), evening(bad), bedtime(frozen solid).
- Diagnosis - additional
- lack of self-esteem at school/college/University -> eating disorders in youth thus weight gains.
- lack of energy during late-daytime (teens/adult) -> compensate by over-eating.
In most cases, between the age of 2 and 4 oculomotor signals are present. Between the age of 2 and 8, telangiectasias appears. Usually by the age of 10 the child needs a wheel chair. Individuals with autosomal recessive cerebellum ataxia usually survive till their 20s; in some cases individuals have survived till their 40s or 50s.
Treatment consists of physical rehabilitation programs designed to improve overall function, increase strength and improve balance. The ultimate goal is to increase the patient's degree of independence, thus improving the patient's quality of life. Exercise typically begins with simple movements, gradually transitioning into more complex actions. Various aspects of treatment are assessed based on the individual patient's condition, utilizing many assessment tools:
- Functional Reach Test
- External Perturbation Test – Push, Release
- External Perturbation Test – Pull
- Clinical Sensory Integration Test
- Single Leg Stance Test
- Five Times Sit to Stand Test
Various scales are also utilized
- Brief Ataxia Rating Scale
- Friedreich's Ataxia Impact Scale
- Scale For Assessment and Rating of Ataxia
Many conditions are associated with dizziness. Dizziness can accompany certain serious events, such as a concussion or brain bleed, epilepsy and seizures (convulsions), strokes, and cases of meningitis and encephalitis. However, the most common subcategories can be broken down as follows: 40% peripheral vestibular dysfunction, 10% central nervous system lesion, 15% psychiatric disorder, 25% presyncope/disequilibrium, and 10% nonspecific dizziness. Some vestibular pathologies have symptoms that are comorbid with mental disorders. The medical conditions that often have dizziness as a symptom include:
- Benign paroxysmal positional vertigo
- Meniere's disease
- Vestibular neuronitis
- Labyrinthitis
- Otitis media
- Brain tumor
- Acoustic neuroma
- Motion sickness
- Ramsay Hunt syndrome
- Migraine
- Multiple sclerosis
- Pregnancy
- low blood pressure (hypotension)
- low blood oxygen content (hypoxemia)
- heart attack
- iron deficiency (anemia)
- low blood sugar (hypoglycemia)
- hormonal changes (e.g. thyroid disease, menstruation, pregnancy)
- panic disorder
- hyperventilation
- anxiety
- depression
- age-diminished visual, balance, and perception of spatial orientation abilities
Treatment for this rare genetic disorder can be physical therapy, there have been antibiotics found to be affective, and surgery has been found to be another solution.
For a prognosis, treatment, and any other information, please consult your doctor.
The most effective treatment of astasia seems to be a removal of stress inducing stimuli and allowing the patient to rest and regain strength. Despite the lack of a direct prescribable cure for the effect of astasia on the motor system of the legs, in almost all documented cases physical rehabilitation and relief from mental stressors have led to a full recovery. Although astasia is not expressly associated with any neurological disorders, there is a strong correlation between general mental hysteria and the symptoms of astasia. Therefore, isolation of the patient from the situation causing them hysteria is the most efficient way to rid them of disabling motor symptoms. Another method for treatment that patients who experience astasia is to have therapy for the triceps surae muscle. This therapy can help strengthen these muscles to help maintain an upright posture. It has also been suggested that ankle-foot orthoses be prescribed for these patients. This would help patients with astasia maintain balance by preventing ankle dorsiflexion.
Currently, physical therapy and rehabilitation are widely accepted as the best treatments for the symptoms of astasia. There is, however, evidence to suggest that regulation of a patient's social situation and behavioral influences can influence the effectiveness of rehabilitation. A 1975 study shows that when a patient is given direct encouragement and social distractions their physical recovery proceeds much faster than when only basic instructions are provided to them.