Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In "Acanthamoeba" infections, the diagnosis can be made from microscopic examination of stained smears of biopsy specimens (brain tissue, skin, cornea) or of corneal scrapings, which may detect trophozoites and cysts. Cultivation of the causal organism, and its identification by direct immunofluorescent antibody, may also prove useful. Laboratory workers and physicians often mistake the organisms on wet mount for monocytes and a diagnosis of viral meningitis is mistakenly given if the organisms are not motile. Heating a copper penny with an alcohol lamp and placing it on the wet mount slide will activate sluggish trophozoites and more rapidly make the diagnosis. If the person performing the spinal tap rapidly looks at the heated wet mount slide the trophozoites can be seen to swarm while monocytes do not.
The CDC states that PCR testing from a single blood draw is not sufficiently sensitive for "B." "henselae" testing, and can result in high false negative rates due to a small sample volume and levels below the limit of molecular detection.
"Bartonella" spp. are fastidious, slow-growing bacteria that are difficult to grow using traditional solid agar plate culture methods due to complex nutritional requirements and potentially a low number of circulating bacteria. This conventional method of culturing "Bartonella" spp. from blood inoculates plated directly onto solid agar plates requires an extended incubation period of 21 days due to the slow growth rate.
"Bartonella" growth rates improve when cultured in an enrichment inoculation step in a liquid insect-based medium such as "Bartonella" α-Proteobacteria Growth Medium (BAPGM) or Schneider’s Drosophila-based insect powder medium. Several studies have optimized the growing conditions of "Bartonella" spp. cultures in these liquid media, with no change in bacterial protein expressions or host interactions "in vitro". Insect-based liquid media supports the growth and co-culturing of at least seven "Bartonella" species, reduces bacterial culturing time and facilitates PCR detection and isolation of "Bartonella" spp. from animal and patient samples. Research shows that DNA may be detected following direct extraction from blood samples and become negative following enrichment culture, thus PCR is recommended after direct sample extraction and also following incubation in enrichment culture. Several studies have successfully optimized sensitivity and specificity by using PCR amplification (pre-enrichment PCR) and enrichment culturing of blood draw samples, followed by PCR (post-enrichment PCR) and DNA sequence identification.
"N. fowleri" can be grown in several kinds of liquid axenic media or on non-nutrient agar plates coated with bacteria. "Escherichia coli" can be used to overlay the non-nutrient agar plate and a drop of cerebrospinal fluid sediment is added to it. Plates are then incubated at 37 °C and checked daily for clearing of the agar in thin tracks, which indicate the trophozoites have fed on the bacteria. Detection in water is performed by centrifuging a water sample with "E. coli" added, then applying the pellet to a non-nutrient agar plate. After several days, the plate is microscopically inspected and "Naegleria" cysts are identified by their morphology. Final confirmation of the species' identity can be performed by various molecular or biochemical methods.
Confirmation of "Naegleria" presence can be done by a so-called flagellation test, where the organism is exposed to a hypotonic environment (distilled water). "Naegleria", in contrast to other amoebae, differentiates within two hours into the flagellate state.
Pathogenicity can be further confirmed by exposure to high temperature (42 °C): "Naegleria fowleri" is able to grow at this temperature, but the nonpathogenic "Naegleria gruberi" is not.
Eye and skin infections caused by "Acanthamoeba spp." are generally treatable. Topical use of 0.1% propamidine isethionate (Brolene) plus neomycin-polymyxin B-gramicidin ophthalmic solution has been a successful approach; keratoplasty is often necessary in severe infections. Although most cases of brain (CNS) infection with "Acanthamoeba" have resulted in death, patients have recovered from the infection with proper treatment.
Michael Beach, a recreational waterborne illness specialist for the Centers for Disease Control and Prevention, stated in remarks to the Associated Press that wearing of nose-clips to prevent insufflation of contaminated water would be effective protection against contracting PAM, noting that "You'd have to have water going way up in your nose to begin with".
Advice stated in the press release from Taiwan's Centers for Disease Control recommended people prevent fresh water from entering the nostrils and avoid putting their heads down into fresh water or stirring mud in the water with feet. When starting to suffer from fever, headache, nausea, or vomiting subsequent to any kind of exposure to fresh water even if the belief in none of the fresh water has traveled through nostrils, people with such conditions should be carried to hospital quickly and make sure doctors are well-informed about the history of exposure to fresh water.
A brain biopsy will reveal the presence of infection by pathogenic amoebas. In GAE, these present as general inflammation and sparse granules. On microscopic examination, infiltrates of amoebic cysts and/or trophozoites will be visible.
GAE, in general, must be treated by killing the pathogenic amoebas which cause it.
One way to diagnose "C. felis" is by taking blood and performing a peripheral blood smear to look for the erythrocytic piroplasms. The erythrocytic piroplasms are usually shaped like signet rings and are 1 to 1.5 µm. Not all cats that are infected will have the piroplasms on their blood smear, especially if they are early in disease course. Another method of diagnosing infection in sick cats is to take needle aspirates of affected organs and find the schizonts inside mononuclear cells in the tissues; examination of tissue is also useful for the diagnosis after cats have died. Blood samples can be sent away for polymerase chain reaction (PCR) testing to confirm infection. Other diseases that might resemble cytauxzoonosis should be ruled out. A major rule-out for "C. felis" is "Mycoplasma haemofelis" (formerly known as "Haemobartonella felis"); clinical signs can be similar to cytauxzoonosis and the organism may be confused on the peripheral smear. Because it causes similar signs in outdoor cats during the spring and summer, tularemia is another disease the veterinarian may want to rule out.
Other laboratory tests are often abnormal in sick cats. The CBC of an infected cat often shows a pancytopenia, or a decrease in red blood cells, white blood cells, and platelets; in some cases there is not a decrease in all three values. Clotting tests may be prolonged. Increased liver enzymes are common, and electrolyte disturbances, hyperglycemia, and acid-base disturbances can also be observed.
Recommendations for the diagnosis of congenital toxoplasmosis include: prenatal diagnosis based on testing of amniotic fluid and ultrasound examinations; neonatal diagnosis based on molecular testing of placenta and cord blood and comparative mother-child serologic tests and a clinical examination at birth; and early childhood diagnosis based on neurologic and ophthalmologic examinations and a serologic survey during the first year of life. During pregnancy, serological testing is recommended at three week intervals.
Even though diagnosis of toxoplasmosis heavily relies on serological detection of specific anti-"Toxoplasma" immunoglobulin, serological testing has limitations. For example, it may fail to detect the active phase of "T. gondii" infection because the specific anti-"Toxoplasma" IgG or IgM may not be produced until after several weeks of infection. As a result, a pregnant woman might test negative during the active phase of "T. gondii" infection leading to undetected and therefore untreated congenital toxoplasmosis. Also, the test may not detect "T. gondii" infections in immunocompromised patients because the titers of specific anti-"Toxoplasma" IgG or IgM may not rise in this type of patient.
Many PCR-based techniques have been developed to diagnose toxoplasmosis using clinical specimens that include amniotic fluid, blood, cerebrospinal fluid, and tissue biopsy. The most sensitive PCR-based technique is nested PCR, followed by hybridization of PCR products. The major downside to these techniques is that they are time consuming and do not provide quantitative data.
Real-time PCR is useful in pathogen detection, gene expression and regulation, and allelic discrimination. This PCR technique utilizes the 5' nuclease activity of "Taq" DNA polymerase to cleave a nonextendible, fluorescence-labeled hybridization probe during the extension phase of PCR. A second fluorescent dye, e.g., 6-carboxy-tetramethyl-rhodamine, quenches the fluorescence of the intact probe. The nuclease cleavage of the hybridization probe during the PCR releases the effect of quenching resulting in an increase of fluorescence proportional to the amount of PCR product, which can be monitored by a sequence detector.
Toxoplasmosis cannot be detected with immunostaining. Lymph nodes affected by "Toxoplasma" have characteristic changes, including poorly demarcated reactive germinal centers, clusters of monocytoid B cells, and scattered epithelioid histiocytes.
The classic triad of congenital toxoplasmosis includes: chorioretinitis, hydrocephalus, and intracranial artheriosclerosis.
Diagnosis of toxoplasmosis in humans is made by biological, serological, histological, or molecular methods, or by some combination of the above. Toxoplasmosis can be difficult to distinguish from primary central nervous system lymphoma. It mimics several other infectious diseases so clinical signs are non-specific and are not sufficiently characteristic for a definite diagnosis. As a result, the diagnosis is made by a trial of therapy (pyrimethamine, sulfadiazine, and folinic acid (USAN: leucovorin)), if the drugs produce no effect clinically and no improvement on repeat imaging.
"T. gondii" may also be detected in blood, amniotic fluid, or cerebrospinal fluid by using polymerase chain reaction. "T. gondii" may exist in a host as an inactive cyst that would likely evade detection.
Serological testing can detect "T. gondii" antibodies in blood serum, using methods including the Sabin–Feldman dye test (DT), the indirect hemagglutination assay, the indirect fluorescent antibody assay (IFA), the direct agglutination test, the latex agglutination test (LAT), the enzyme-linked immunosorbent assay (ELISA), and the immunosorbent agglutination assay test (IAAT).
The most commonly used tests to measure IgG antibody are the DT, the ELISA, the IFA, and the modified direct agglutination test. IgG antibodies usually appear within a week or two of infection, peak within one to two months, then decline at various rates. "Toxoplasma" IgG antibodies generally persist for life, and therefore may be present in the bloodstream as a result of either current or previous infection.
To some extent, acute toxoplasmosis infections can be differentiated from chronic infections using an IgG avidity test, which is a variation on the ELISA. In the first response to infection, toxoplasma-specific IgG has a low affinity for the toxoplasma antigen; in the following weeks and month, IgG affinity for the antigen increases. Based on the IgG avidity test, if the IgG in the infected individual has a high affinity, it means that the infection began three to five months before testing. This is particularly useful in congenital infection, where pregnancy status and gestational age at time of infection determines treatment.
In contrast to IgG, IgM antibodies can be used to detect acute infection, but generally not chronic infection. The IgM antibodies appear sooner after infection than the IgG antibodies and disappear faster than IgG antibodies after recovery. In most cases, "T. gondii"-specific IgM antibodies can first be detected approximately a week after acquiring primary infection, and decrease within one to six months; 25% of those infected are negative for "T. gondii"-specific IgM within seven months. However, IgM may be detectable months or years after infection, during the chronic phase, and false positives for acute infection are possible. The most commonly used tests for the measurement of IgM antibody are double-sandwich IgM-ELISA, the IFA test, and the immunosorbent agglutination assay (IgM-ISAGA). Commercial test kits often have low specificity, and the reported results are frequently misinterpreted.
"Balamuthia" infection is a cutaneous condition resulting from "Balamuthia" that may result in various skin lesions.
"Balamuthia mandrillarisis" a free-living amoeba (a single-celled living organism) found in the environment. It is one of the causes of granulomatous amoebic encephalitis (GAE), a serious infection of the brain and spinal cord. "Balamuthia" is thought to enter the body when soil containing it comes in contact with skin wounds and cuts, or when dust containing it is breathed in or gets in the mouth. The "Balamuthia" amoebae can then travel to the brain through the blood stream and cause GAE. GAE is a very rare disease that is usually fatal.
Scientists at the Centers for Disease Control and Prevention (CDC) first discovered "Balamuthia mandrillaris" in 1986. The amoeba was found in the brain of a dead mandrill. After extensive research, "B. mandrillaris" was declared a new species in 1993. Since then, more than 200 cases of "Balamuthia" infection have been diagnosed worldwide, with at least 70 cases reported in the United States. Little is known at this time about how a person becomes infected.
The following diagnostic methods are not routinely available to patients. Researchers have reported that they are more reliable at detecting infection, and in some cases can provide the physician with information to help determine whether "Blastocystis" infection is the cause of the patient's symptoms:
Serum antibody testing: A 1993 research study performed by the NIH with United States patients suggested that it was possible to distinguish symptomatic and asymptomatic infection with "Blastocystis" using serum antibody testing. The study used blood samples to measure the patient's immune reaction to chemicals present on the surface of the "Blastocystis" cell. It found that patients diagnosed with symptomatic "Blastocystis" infection exhibited a much higher immune response than controls who had "Blastocystis" infection but no symptoms. The study was repeated in 2003 at Ain Shams University in Egypt with Egyptian patients with equivalent results.
Fecal antibody testing: A 2003 study at Ain Shams University in Egypt indicated that patients symptomatically infected could be distinguished with a fecal antibody test. The study compared patients diagnosed with symptomatic "Blastocystis" infection to controls who had "Blastocystis" infection but no symptoms. In the group with symptoms, IgA antibodies to "Blastocystis" were detected in fecal specimens that were not present in the healthy control group.
Stool culture: Culturing has been shown to be a more reliable method of identifying infection. In 2006, researchers reported the ability to distinguish between disease causing and non-disease causing isolates of "Blastocystis" using stool culture. "Blastocystis" cultured from patients who were sick and diagnosed with "Blastocystis" infection produced large, highly adhesive amoeboid forms in culture. These cells were absent in "Blastocystis" cultures from healthy controls. Subsequent genetic analysis showed the "Blastocystis" from healthy controls was genetically distinct from that found in patients with symptoms. Protozoal culture is unavailable in most countries due to the cost and lack of trained staff able to perform protozoal culture.
Genetic analysis of isolates: Researchers have used techniques which allow the DNA of "Blastocystis" to be isolated from fecal specimens. This method has been reported to be more reliable at detecting "Blastocystis" in symptomatic patients than stool culture. This method also allows the species group of "Blastocystis" to be identified. Research is continuing into which species groups are associated with symptomatic (see Genetics and Symptoms) blastocystosis.
Immuno-fluorescence (IFA) stain: An IFA stain causes "Blastocystis" cells to glow when viewed under a microscope, making the diagnostic method more reliable. IFA stains are in use for Giardia and Cryptosporidium for both diagnostic purposes and water quality testing. A 1991 paper from the NIH described the laboratory development of one such stain. However, no company currently offers this stain commercially.
The preventative measure of keeping cats inside in areas with high infection rates can prevent infection. Approved tick treatments for cats can be used but have been shown not to fully prevent tick bites.
The most often used treatments for cytauxzoonosis are imidocarb dipropionate and a combination of atovaquone and azithromycin. Although imidocarb has been used for years, it is not particularly effective. In a large study, only 25% of cats treated with this drug and supportive care survived. 60% of sick cats treated with supportive care and the combination of the anti-malarial drug atovaquone and the antibiotic azithromycin survived infection.
Quick referral to a veterinarian equipped to treat the disease may be beneficial. All infected cats require supportive care, including careful fluids, nutritional support, treatment for complications, and often blood transfusion.
Cats that survive the infection should be kept indoors as they can be persistent carriers after surviving infection and might indirectly infect other cats after being themselves bitten by a vector tick.
Diagnosis is performed by determining if the infection is present, and then making a decision as to whether the infection is responsible for the symptoms. Diagnostic methods in clinical use have been reported to be of poor quality and more reliable methods have been reported in research papers.
For identification of infection, the only method clinically available in most areas is the "Ova and Parasite" (O&P) exam, which identifies the presence of the organism by microscopic examination of a chemically preserved stool specimen. This method is sometimes called "Direct Microscopy". In the United States, pathologists are required to report the presence of "Blastocystis" when found during an O&P exam, so a special test does not have to be ordered. Direct Microscopy is inexpensive, as the same test can identify a variety of gastrointestinal infections, such as "Giardia", "Entamoeba histolytica", "Cryptosporidium". However one laboratory director noted that pathologists using conventional microscopes failed to identify many "Blastocystis" infections, and indicated the necessity for special microscopic equipment for identification. The following table shows the sensitivity of Direct Microscopy in detecting "Blastocystis" when compared to stool culture, a more sensitive technique. Stool culture was considered by some researchers to be the most reliable technique, but a recent study found stool culture only detected 83% of individuals infected when compared to polymerase chain reaction (PCR) testing.
Reasons given for the failure of Direct Microscopy include: (1) Variable Shedding: The quantity of "Blastocystis" organisms varies substantially from day to day in infected humans and animals; (2) Appearance: Some forms of "Blastocystis" resemble fat cells or white blood cells, making it difficult to distinguish the organism from other cells in the stool sample; (3) Large number of morphological forms: "Blastocystis" cells can assume a variety of shapes, some have been described in detail only recently, so it is possible that additional forms exist but have not been identified.
Several methods have been cited in literature for determination of the significance of the finding of "Blastocystis":
1. Diagnosis only when large numbers of organism present: Some physicians consider "Blastocystis" infection to be a cause of illness only when large numbers are found in stool samples. Researchers have questioned this approach, noting that it is not used with any other protozoal infections, such as "Giardia" or "Entamoeba histolytica". Some researchers have reported no correlation between number of organisms present in stool samples and the level of symptoms. A study using polymerase chain reaction testing of stool samples suggested that symptomatic infection can exist even when sufficient quantities of the organism do not exist for identification through Direct Microscopy.
2. Diagnosis-by-exclusion: Some physicians diagnose "Blastocystis" infection by excluding all other causes, such as infection with other organisms, food intolerances, colon cancer, etc. This method can be time consuming and expensive, requiring many tests such as endoscopy and colonoscopy.
3. Disregarding "Blastocystis" : In the early to mid-1990s, some US physicians suggested all findings of "Blastocystis" are insignificant. No recent publications expressing this opinion could be found.
One strategy for the prevention of infection transmission between cats and people is to better educate people on the behaviour that puts them at risk for becoming infected.
Those at the highest risk of contracting a disease from a cat are those with behaviors that include: being licked, sharing food, sharing kithchen utensils, kissing, and sleeping with a cat. The very young, the elderly and those who are immunocompromised increase their risk of becoming infected when sleeping with their cats (and dogs). The CDC recommends that cat owners not allow a cat to lick your face because it can result in disease transmission. If someone is licked on their face, mucous membranes or an open wound, the risk for infection is reduced if the area is immediately washed with soap and water. Maintaining the health of the animal by regular inspection for fleas and ticks, scheduling deworming medications along with veterinary exams will also reduce the risk of acquiring a feline zoonosis.
Recommendations for the prevention of ringworm transmission to people include:
- regularly vacuuming areas of the home that pets commonly visit helps to remove fur or flakes of skin
- washing the hands with soap and running water after playing with or petting your pet.
- wearing gloves and long sleeves when handling cats infected with.
- disinfect areas the pet has spent time in, including surfaces and bedding.
- the spores of this fungus can be killed with common disinfectants like chlorine bleach diluted 1:10 (1/4 cup in 1 gallon of water), benzalkonium chloride, or strong detergents.
- not handling cats with ringworm by those whose immune system is weak in any way (if you have HIV/AIDS, are undergoing cancer treatment, or are taking medications that suppress the immune system, for example).
- taking the cat to the veterinarian if ringworm infection is suspected.
Lumbar puncture should always be done is cases of suspected meningitis. In cases of eosiniphilc meningitis it will rarely produce worms even when they are present in the CSF, because they tend to cling to the end of nerves. Larvae are present in the CSF in only 1.9-10% of cases. However, as a case of eosiniphilic meningitis progresses, intracranial pressure and eosiniphil counts should rise. Increased levels of eosinophils in the CSF is a trademark of the eosiniphilic meningitis.
Diagnosis is usually performed by submitting multiple stool samples for examination by a parasitologist in a procedure known as an ova and parasite examination. About 30% of children with "D. fragilis" infection exhibit peripheral blood eosinophilia.
A minimum of three stool specimens having been immediately fixed in polyvinyl alcohol fixative, sodium acetate-acetic acid-formalin fixative, or Schaudinn's fixative should be submitted, as the protozoan does not remain morphologically identifiable for long. All specimens, regardless of consistency, are permanently stained prior to microscopic examination with an oil immersion lens. The disease may remain cryptic due to the lack of a cyst stage if these recommendations are not followed.
The trophozoite forms have been recovered from formed stool, thus the need to perform the ova and parasite examination on specimens other than liquid or soft stools. DNA fragment analysis provides excellent sensitivity and specificity when compared to microscopy for the detection of "D. fragilis" and both methods should be employed in laboratories with PCR capability. The most sensitive detection method is parasite culture, and the culture medium requires the addition of rice starch.
An indirect fluorescent antibody (IFA) for fixed stool specimens has been developed.
1. One researcher investigated the phenomenon of symptomatic relapse following treatment of infection with "D. fragilis" in association with its apparent disappearance from stool samples. The organism could still be detected in patients through colonoscopy or by examining stool samples taken in conjunction with a saline laxative.
2. A study found that trichrome staining, a traditional method for identification, had a sensitivity of 36% (9/25) when compared to stool culture.
3. An additional study found that the sensitivity of staining was 50% (2/4), and that the organism could be successfully cultured in stool specimens up to 12-hours old that were kept at room temperature.
When physical examination of the newborn shows signs of a vertically transmitted infection, the examiner may test blood, urine, and spinal fluid for evidence of the infections listed above. Diagnosis can be confirmed by culture of one of the specific pathogens or by increased levels of IgM against the pathogen.
Brain lesions, with invasion of both gray and white matter, can be seen on a CT or MRI. However MRI findings tend to be inconclusive, and usually include nonspecific lesions and ventricular enlargement. Sometimes a hemorrhage, probably produced by migrating worms, is present and of diagnostic value.
Neonatal sepsis of the newborn is an infection that has spread through the entire body. The inflammatory response to this systematic infection can be as serious as the infection itself. In infants that weigh under 1500 g, sepsis is the most common cause of death. Three to four percent of infants per 1000 births contract sepsis. The mortality rate from sepsis is near 25%. Infected sepsis in an infant can be identified by culturing the blood and spinal fluid and if suspected, intravenous antibiotics are usually started. Lumbar puncture is controversial because in some cases it has found not to be necessary while concurrently, without it estimates of missing up to one third of infants with meningitis is predicted.
Antigen ELISA and rtPCR are currently the most frequently performed tests to detect virus or viral antigen. Individual testing of ear tissue tag samples or serum samples is performed. It is vital that repeat testing is performed on positive samples to distinguish between acute, transiently infected cattle and PIs. A second positive result, acquired at least three weeks after the primary result, indicates a PI animal. rtPCR can also be used on bulk tank milk (BTM) samples to detect any PI cows contributing to the tank. It is reported that the maximum number of contributing cows from which a PI can be detected is 300.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
Antibody (Ig) ELISAs are used to detect historical BVDV infection; these tests have been validated in serum, milk and bulk milk samples. Ig ELISAs do not diagnose active infection but detect the presence of antibodies produced by the animal in response to viral infection. Vaccination also induces an antibody response, which can result in false positive results, therefore it is important to know the vaccination status of the herd or individual when interpreting results. A standard test to assess whether virus has been circulating recently is to perform an Ig ELISA on blood from 5–10 young stock that have not been vaccinated, aged between 9 and 18 months. A positive result indicates exposure to BVDV, but also that any positive animals are very unlikely to be PI animals themselves. A positive result in a pregnant female indicates that she has previously been either vaccinated or infected with BVDV and could possibly be carrying a PI fetus, so antigen testing of the newborn is vital to rule this out. A negative antibody result, at the discretion of the responsible veterinarian, may require further confirmation that the animal is not in fact a PI.
At a herd level, a positive Ig result suggests that BVD virus has been circulating or the herd is vaccinated. Negative results suggest that a PI is unlikely however this naïve herd is in danger of severe consequences should an infected animal be introduced. Antibodies from wild infection or vaccination persist for several years therefore Ig ELISA testing is more valuable when used as a surveillance tool in seronegative herds.
Opportunistic infections caused by Feline Leukemia Virus and Feline immunodeficiency virus retroviral infections can be treated with Lymphocyte T-Cell Immune Modulator.