Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of the differential diagnosis for polyneuropathy one must look at the following:
The diagnosis of polyneuropathies begins with a history and physical examination to ascertain the pattern of the disease process (such as-arms, legs, distal, proximal) if they fluctuate, and what deficits and pain are involved. If pain is a factor, determining where and how long the pain has been present is important, one also needs to know what disorders are present within the family and what diseases the person may have. Although diseases often are suggested by the physical examination and history alone, tests that may be employed include: electrodiagnostic testing, serum protein electrophoresis, nerve conduction studies, urinalysis, serum creatine kinase (CK) and antibody testing (nerve biopsy is sometimes done).
Other tests may be used, especially tests for specific disorders associated with polyneuropathies, quality measures have been developed to diagnose patients with distal symmetrical polyneuropathy (DSP).
Several other illnesses can present with a monoclonal gammopathy, and the monoclonal protein may be the first discovery before a formal diagnosis is made:
The protein electrophoresis test should be repeated annually, and if there is any concern for a rise in the level of monoclonal protein, then prompt referral to a hematologist is required. The hematologist, when first evaluating a case of MGUS, will usually perform a skeletal survey (X-rays of the proximal skeleton), check the blood for hypercalcemia and deterioration in renal function, check the urine for Bence Jones protein and perform a bone marrow biopsy. If none of these tests are abnormal, a patient with MGUS is followed up once every 6 months to a year with a blood test (serum protein electrophoresis). Although patients with MGUS have sometimes been reported to suffer from Small Fiber Neuropathy in monoclonal gammopathy of undetermined significance:a debilitating condition which causes bizarre sensory problems to painful sensory problems. peripheral neuropathy, no treatment is indicated.
There are several types of immune-mediated neuropathies recognised. These include
- Chronic inflammatory demyelinating polyneuropathy (CIPD) with subtypes:
- Classical CIDP
- CIDP with diabetes
- CIDP/monoclonal gammopathy of undetermined significance
- Sensory CIDP
- Multifocal motor neuropathy
- Multifocal acquired demyelinating sensory and motor neuropathy (Lewis-Sumner syndrome)
- Multifocal acquired sensory and motor neuropathy
- Distal acquired demyelinating sensory neuropathy
- Guillain-Barre syndrome with subtypes:
- Acute inflammatory demyelinating polyradiculoneuropathy
- Acute motor axonal neuropathy
- Acute motor and sensory axonal neuropathy
- Acute pandysautonomia
- Miller Fisher syndrome
- IgM monoclonal gammopathies with subtypes:
- Waldenstrom's macroglobulinemia
- Mixed cryoglobulinemia, gait ataxia, late-onset polyneuropathy syndrome
- Myelin-associated glycoprotein-associated gammopathy, polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes syndrome (POEMS)
For this reason a diagnosis of chronic inflammatory demyelinating polyneuropathy needs further investigations.
The diagnosis is usually provisionally made through a clinical neurological examination. Patients usually present with a history of weakness, numbness, tingling, pain and difficulty in walking. They may additionally present with fainting spells while standing up or burning pain in extremities. Some patients may have sudden onset of back pain or neck pain radiating down the extremities, usually diagnosed as radicular pain. These symptoms are usually progressive and may be intermittent.
Autonomic system dysfunction can occur; in such a case, the patient would complain of orthostatic dizziness, problems breathing, eye, bowel, bladder and cardiac problems. The patient may also present with a single cranial nerve or peripheral nerve dysfunction.
On examination the patients may have weakness, and loss of deep tendon reflexes (rarely increased or normal). There may be atrophy (shrinkage) of muscles, fasciculations (twitching) and loss of sensation. Patients may have multi-focal motor neuropathy, as they have no sensory loss.
Most experts consider the necessary duration of symptoms to be greater than 8 weeks for the diagnosis of CIDP to be made.
Typical diagnostic tests include:
- Electrodiagnostics – electromyography (EMG) and nerve conduction study (NCS). In usual CIDP, the nerve conduction studies show demyelination. These findings include:
1. a reduction in nerve conduction velocities;
2. the presence of conduction block or abnormal temporal dispersion in at least one motor nerve;
3. prolonged distal latencies in at least two nerves;
4. absent F waves or prolonged minimum F wave latencies in at least two motor nerves. (In some case EMG/NCV can be normal).
- Serum test to exclude other autoimmune diseases.
- Lumbar puncture and serum test for anti-ganglioside antibodies. These antibodies are present in the branch of CIDP diseases comprised by anti-GM1, anti-GD1a, and anti-GQ1b.
- Sural nerve biopsy; biopsy is considered for those patients in whom the diagnosis is not completely clear, when other causes of neuropathy (e.g., hereditary, vasculitic) cannot be excluded, or when profound axonal involvement is observed on EMG.
- Ultrasound of the periferal nerves may show swelling of the affected nerves
- MRI can also be used in the diagnosic workup
In some cases electrophysiological studies fail to show any evidence of demyelination. Though conventional electrophysiological diagnostic criteria are not met, the patient may still respond to immunomodulatory treatments. In such cases, presence of clinical characteristics suggestive of CIDP are critical, justifying full investigations, including sural nerve biopsy.
As in multiple sclerosis, another demyelinating condition, it is not possible to predict with certainty how CIDP will affect patients over time. The pattern of relapses and remissions varies greatly with each patient. A period of relapse can be very disturbing, but many patients make significant recoveries.
If diagnosed early, initiation of early treatment to prevent loss of nerve axons is recommended. However, many individuals are left with residual numbness, weakness, tremors, fatigue and other symptoms which can lead to long-term morbidity and diminished quality of life.
It is important to build a good relationship with doctors, both primary care and specialist. Because of the rarity of the illness, many doctors will not have encountered it before. Each case of CIDP is different, and relapses, if they occur, may bring new symptoms and problems. Because of the variability in severity and progression of the disease, doctors will not be able to give a definite prognosis. A period of experimentation with different treatment regimens is likely to be necessary in order to discover the most appropriate treatment regimen for a given patient.
A diagnosis of Waldenström's macroglobulinemia depends on a significant monoclonal IgM spike evident in blood tests and malignant cells consistent with the disease in bone marrow biopsy samples. Blood tests show the level of IgM in the blood and the presence of proteins, or tumor markers, that are the key symptoms of WM. A bone marrow biopsy provides a sample of bone marrow, usually from the back of the pelvis bone. The sample is extracted through a needle and examined under a microscope. A pathologist identifies the particular lymphocytes that indicate WM. Flow cytometry may be used to examine markers on the cell surface or inside the lymphocytes.
Additional tests such as computed tomography (CT or CAT) scan may be used to evaluate the chest, abdomen, and pelvis, particularly swelling of the lymph nodes, liver, and spleen. A skeletal survey can help distinguish between WM and multiple myeloma. Anemia is typically found in 80% of patients with WM. A low white blood cell count, and low platelet count in the blood may be observed. A low level of neutrophils (a specific type of white blood cell) may also be found in some individuals with WM.
Chemistry tests include lactate dehydrogenase (LDH) levels, uric acid levels, erythrocyte sedimentation rate (ESR), kidney and liver function, total protein levels, and an albumin-to-globulin ratio. The ESR and uric acid level may be elevated. Creatinine is occasionally elevated and electrolytes are occasionally abnormal. A high blood calcium level is noted in approximately 4% of patients. The LDH level is frequently elevated, indicating the extent of Waldenström's macroglobulinemia–related tissue involvement. Rheumatoid factor, cryoglobulins, direct antiglobulin test and cold agglutinin titre results can be positive. Beta-2 microglobulin and C-reactive protein test results are not specific for Waldenström's macroglobulinemia. Beta-2 microglobulin is elevated in proportion to tumor mass. Coagulation abnormalities may be present. Prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen tests should be performed. Platelet aggregation studies are optional. Serum protein electrophoresis results indicate evidence of a monoclonal spike but cannot establish the spike as IgM. An M component with beta-to-gamma mobility is highly suggestive of Waldenström's macroglobulinemia. Immunoelectrophoresis and immunofixation studies help identify the type of immunoglobulin, the clonality of the light chain, and the monoclonality and quantitation of the paraprotein. High-resolution electrophoresis and serum and urine immunofixation are recommended to help identify and characterize the monoclonal IgM paraprotein.
The light chain of the monoclonal protein is usually the kappa light chain. At times, patients with Waldenström's macroglobulinemia may exhibit more than one M protein. Plasma viscosity must be measured. Results from characterization studies of urinary immunoglobulins indicate that light chains (Bence Jones protein), usually of the kappa type, are found in the urine. Urine collections should be concentrated.
Bence Jones proteinuria is observed in approximately 40% of patients and exceeds 1 g/d in approximately 3% of patients. Patients with findings of peripheral neuropathy should have nerve conduction studies and antimyelin associated glycoprotein serology.
Criteria for diagnosis of Waldenström's macroglobulinemia include:
1. IgM monoclonal gammopathy that excludes chronic lymphocytic leukemia and Mantle cell lymphoma
2. Evidence of anemia, constitutional symptoms, hyperviscosity, swollen lymph nodes, or enlargement of the liver and spleen that can be attributed to an underlying lymphoproliferative disorder.
Initial screening for CIP/CIM may be performed using an objective scoring system for muscle strength. The Medical Research Council (MRC) score is one such tool, and sometimes used to help identify CIP/CIM patients in research studies. The MRC score involves assessing strength in 3 muscle groups in the right and left sides of both the upper and lower extremities. Each muscle tested is given a score of 0-5, giving a total possible score of 60. An MRC score less than 48 is suggestive of CIP/CIM. However, the tool requires that patients be awake and cooperative, which is often not the case. Also, the screening tool is non-specific, because it does not identify the cause a person's muscle weakness.
Once weakness is detected, the evaluation of muscle strength should be repeated several times. If the weakness persists, then a muscle biopsy, a nerve conduction study (electrophysiological studies), or both should be performed.
The serum creatine phosphokinase (CPK) can be mildly elevated. While the CPK is often a good marker for damage to muscle tissue, it is not a helpful marker in CIP/CIM, because CIP/CIM is a gradual process and does not usually involve significant muscle cell death (necrosis). Also, even if necrosis is present, it may be brief and is therefore easily missed. If a lumbar puncture (spinal tap) is performed, the protein level in the cerebral spinal fluid would be normal.
AQP4-Ab-negative NMO presents problems for diagnosis. The behavior of the oligoclonal bands respect MS can help to establish a more accurate diagnosis. Oligoclonal bands in NMO are rare and they tend to disappear after the attacks, while in MS they are nearly always present and persistent.
It is important to notice for differential diagnosis that, though uncommon, it is possible to have longitudinal lesions in MS
Other problem for diagnosis is that AQP4ab in MOGab levels can be too low to be detected. Some additional biomarkers have been proposed.
Peripheral neuropathy may first be considered when an individual reports symptoms of numbness, tingling, and pain in feet. After ruling out a lesion in the central nervous system as a cause, diagnosis may be made on the basis of symptoms, laboratory and additional testing, clinical history, and a detailed examination.
During physical examination, specifically a neurological examination, those with generalized peripheral neuropathies most commonly have distal sensory or motor and sensory loss, although those with a pathology (problem) of the nerves may be perfectly normal; may show proximal weakness, as in some inflammatory neuropathies, such as Guillain–Barré syndrome; or may show focal sensory disturbance or weakness, such as in mononeuropathies. Classically, ankle jerk reflex is absent in peripheral neuropathy.
A physical examination will involve testing the deep ankle reflex as well as examining the feet for any ulceration. For large fiber neuropathy, an exam will usually show an abnormally decreased sensation to vibration, which is tested with a 128-Hz tuning fork, and decreased sensation of light touch when touched by a nylon monofilament.
Diagnostic tests include electromyography (EMG) and nerve conduction studies (NCSs), which assess large myelinated nerve fibers. Testing for small-fiber peripheral neuropathies often relates to the autonomic nervous system function of small thinly- and unmyelinated fibers. These tests include a sweat test and a tilt table test. Diagnosis of small fiber involvement in peripheral neuropathy may also involve a skin biopsy in which a 3 mm-thick section of skin is removed from the calf by a punch biopsy, and is used to measure the skin intraepidermal nerve fiber density (IENFD), the density of nerves in the outer layer of the skin. Reduced density of the small nerves in the epidermis supports a diagnosis of small-fiber peripheral neuropathy.
Laboratory tests include blood tests for vitamin B-12 levels, a complete blood count, measurement of thyroid stimulating hormone levels, a comprehensive metabolic panel screening for diabetes and pre-diabetes, and a serum immunofixation test, which tests for antibodies in the blood.
The Mayo Clinic proposed a revised set of criteria for diagnosis of Devic's disease in 2006. Those new guidelines require two absolute criteria plus at least two of three supportive criteria. In 2015 a new review was published by an international panel refining the previous clinical case definition but leaving the main criteria unmodified:
Absolute criteria:
1. Optic neuritis
2. Acute myelitis
Supportive criteria:
1. Brain MRI not meeting criteria for MS at disease onset
2. Spinal cord MRI with continuous T2-weighted signal abnormality extending over three or more vertebral segments, indicating a relatively large lesion in the spinal cord
3. NMO-IgG seropositive status (The NMO-IgG test checks the existence of antibodies against the aquaporin 4 antigen.)
In the absence of symptoms, many clinicians will recommend simply monitoring the patient; Waldenström himself stated "let well do" for such patients. These asymptomatic cases are now classified as two successively more pre-malignant phases, IgM monoclonal gammopathy of undetermined significance (i.e. IgM MGUS) and smoldering Waldenström's macroglobulinemia.
But on occasion, the disease can be fatal, as it was to the French president Georges Pompidou, who died in office in 1974. Mohammad Reza Shah Pahlavi, the Shah of Iran, also suffered from Waldenström's macroglobulinemia, which resulted in his ill-fated trip to the United States for therapy in 1979, leading to the Iran hostage crisis.
Alcoholic polyneuropathy is very similar to other axonal degenerative polyneuropathies and therefore can be difficult to diagnose. When alcoholics have sensorimotor polyneuropathy as well as a nutritional deficiency, a diagnosis of alcoholic polyneuropathy is often reached.
To confirm the diagnosis, a physician must rule out other causes of similar clinical syndromes. Other neuropathies can be differentiated on the basis of typical clinical or laboratory features. Differential diagnoses to alcoholic polyneuropathy include amyotrophic lateral sclerosis, beriberi, Charcot-Marie-Tooth disease, diabetic lumbosacral plexopathy, Guillain Barre Syndrome, diabetic neuropathy, mononeuritis multiplex and post-polio syndrome.
To clarify the diagnosis, medical workup most commonly involves laboratory tests, though, in some cases, imaging, nerve conduction studies, electromyography, and vibrometer testing may also be used.
A number of tests may be used to rule out other causes of peripheral neuropathy. One of the first presenting symptoms of diabetes mellitus may be peripheral neuropathy, and hemoglobin A1C can be used to estimate average blood glucose levels. Elevated blood creatinine levels may indicate renal insufficiency and may also be a cause of peripheral neuropathy. A heavy metal toxicity screen should also be used to exclude lead toxicity as a cause of neuropathy.
Alcoholism is normally associated with nutritional deficiencies, which may contribute to the development of alcoholic polyneuropathy. Thiamine, vitamin B-12, and folic acid are vitamins that play an essential role in the peripheral and central nervous system and should be among the first analyzed in laboratory tests. It has been difficult to assess thiamine status in individuals due to difficulties in developing a method to directly assay thiamine in the blood and urine. A liver function test may also be ordered, as alcoholic consumption may cause an increase in liver enzyme levels.
All patients with symptomatic cryoglobulinemia are advised to avoid, or protect their extremities, from exposure to cold temperatures. Refrigerators, freezers, and air-conditioning represent dangers of such exposure.
Individuals found to have circulating cryoglobulins but no signs or symptoms of cryoglobulinemic diseases should be evaluated for the possibility that their cryoglobulinemia is a transient response to a recent or resolving infection. Those with a history of recent infection that also have a spontaneous and full resolution of their cryoglobulinemia need no further treatment. Individuals without a history of infection and not showing resolution of their cryoglobulinemia need to be further evaluated. Their cryoglobulins should be analyzed for their composition of immunoglobulin type(s) and complement component(s) and examined for the presence of the premalignant and malignant diseases associated with Type I disease as well as the infectious and autoimmune diseases associated with type II and type III disease. A study conducted in Italy on >140 asymptomatic individuals found five cases of hepatitis C-related and one case of hepatitis b-related cryoglobulinemia indicating that a complete clinical examination of asymptomatic individuals with cryoglobulinemia offers a means for finding people with serious but potentially treatable and even curable diseases. Individuals who show no evidence of a disease underlying their cryoglobulinemia and who remain asymptomatic should be followed closely for any changes that may indicate development of cryoglobulinemic disease.
The diagnostic examination of a person with suspected multiple myeloma typically includes a skeletal survey. This is a series of X-rays of the skull, axial skeleton and proximal long bones. Myeloma activity sometimes appears as "lytic lesions" (with local disappearance of normal bone due to resorption), and on the skull X-ray as "punched-out lesions" (pepper pot skull). lesions man also be sclerotic which is seen as radiodense. Magnetic resonance imaging (MRI) is more sensitive than simple X-ray in the detection of lytic lesions, and may supersede skeletal survey, especially when vertebral disease is suspected. Occasionally a CT scan is performed to measure the size of soft tissue plasmacytomas. Bone scans are typically not of any additional value in the workup of myeloma patients (no new bone formation; lytic lesions not well visualized on bone scan).
A bone marrow biopsy is usually performed to estimate the percentage of bone marrow occupied by plasma cells. This percentage is used in the diagnostic criteria for myeloma. Immunohistochemistry (staining particular cell types using antibodies against surface proteins) can detect plasma cells which express immunoglobulin in the cytoplasm and occasionally on the cell surface; myeloma cells are typically CD56, CD38, CD138, CD319 positive and CD19 and CD45 negative. Cytogenetics may also be performed in myeloma for prognostic purposes, including a myeloma-specific FISH and virtual karyotype.
Historically, the CD138 has been used to isolate myeloma cells for diagnostic purposes. However, this antigen disappears rapidly ex vivo. Recently, however, it was discovered that the surface antigen CD319 (SLAMF7) is considerably more stable and allows robust isolation of malignant plasma cells from delayed or even cryopreserved samples.
Other useful laboratory tests include quantitative measurement of IgA, IgG, IgM (immunoglobulins) to look for immune paresis, and beta-2 microglobulin which provides prognostic information. On peripheral blood smear, the rouleaux formation of red blood cells is commonly seen, though this is not specific.
The recent introduction of a commercial immunoassay for measurement of free light chains potentially offers an improvement in monitoring disease progression and response to treatment, particularly where the paraprotein is difficult to measure accurately by electrophoresis (for example in light chain myeloma, or where the paraprotein level is very low). Initial research also suggests that measurement of free light chains may also be used, in conjunction with other markers, for assessment of the risk of progression from monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma.
This assay, the serum free light chain assay, has recently been recommended by the International Myeloma Working Group for the screening, diagnosis, prognosis, and monitoring of plasma cell dyscrasias.
The prognosis varies widely depending upon various risk factors. The Mayo Clinic has developed a risk-stratification model termed Mayo Stratification for Myeloma and Risk-adapted Therapy (mSMART) which divides people into high-risk and standard-risk categories. People with deletion of chromosome 13 or hypodiploidy by conventional cytogenetics, t(4;14), t(14;16) or 17p- by molecular genetic studies, or with a high plasma cell labeling index (3% or more) are considered to have high-risk myeloma .
Some myeloma centers now employ genetic testing, which they call a “gene array.” By examining DNA, oncologists can determine if patients are high risk or low risk of the cancer returning quickly following treatment.
Cytogenetic analysis of myeloma cells may be of prognostic value, with deletion of chromosome 13, non-hyperdiploidy and the balanced translocations t(4;14) and t(14;16) conferring a poorer prognosis. The 11q13 and 6p21 cytogenetic abnormalities are associated with a better prognosis.
Prognostic markers such as these are always generated by retrospective analyses, and it is likely that new treatment developments will improve the outlook for those with traditionally "poor-risk" disease.
SNP array karyotyping can detect copy number alterations of prognostic significance that may be missed by a targeted FISH panel. In MM, lack of a proliferative clone makes conventional cytogenetics informative in only ~30% of cases.
1. Virtual karyotyping identified chromosomal abnormalities in 98% of MM cases
2. del(12p13.31) is an independent adverse marker
3. amp(5q31.1) is a favorable marker
4. The prognostic impact of amp(5q31.1) over-rides that of hyperdiploidy and also identifies patients who greatly benefit from high-dose therapy.
Array-based karyotyping cannot detect balanced translocations, such as t(4;14) seen in ~15% of MM. Therefore, FISH for this translocation should also be performed if using SNP arrays to detect genome-wide copy number alterations of prognostic significance in MM.
Anti-GQ1b antibodies are found in two-thirds of patients with this condition. This antibody is also found in almost all cases of Miller Fisher syndrome. The EEG is often abnormal, but shows only slow wave activity, which also occurs in many other conditions, and so is of limited value in diagnosis. Similarly, raised CSF protein levels and pleocytosis are frequent but non-specific. It was originally thought that raised CSF protein without pleocytosis ('albuminocytological dissociation') was a characteristic feature, as it is in Guillain–Barré syndrome, but this has not been supported in more recent work. In only 30% of cases is a MRI brain scan abnormal. Nerve conduction studies may show an axonal polyneuropathy.
Most patients reported in the literature have been given treatments suitable for autoimmune neurological diseases, such as corticosteroids, plasmapheresis and/or intravenous immunoglobulin, and most have made a good recovery. The condition is too rare for controlled trials to have been undertaken.
Franklin's disease (gamma heavy chain disease)
It is a very rare B-cell lymphoplasma cell proliferative disorder which may be associated with autoimmune diseases and infection is a common characteristic of the disease. It is characterized by lymphadenopathy, fever, anemia, malaise, hepatosplenomegaly, and weakness. The most distinctive symptom is palatal edema, caused by nodal involvement of Waldeyer's ring.
Diagnosis is made by the demonstration of an anomalous serum M component that reacts with anti-IgG but not anti-light chain reagents. Bone marrow examination is usually nondiagnostic.
Patients usually have a rapid downhill course and die of infection if left untreated or misdiagnosed.
Patients with Franklin disease usually have a history of progressive weakness, fatigue, intermittent fever, night sweats and weight loss and may present with lymphadenopathy (62%), splenomegaly (52%) or hepatomegaly (37%). The fever is considered secondary to impaired cellular and humoral immunity, and thus recurrent infections are the common clinical presentation in Franklin disease. Weng et al. described the first case of Penicillium sp. infection in a patient with Franklin disease and emphasized the importance of proper preparation for biopsy, complete hematologic investigation, culture preparation and early antifungal coverage to improve the outcome.
The γHCD can be divided into three categories based on the various clinical and pathological features. These categories are disseminated lymphoproliferative disease, localized proliferative disease and no apparent proliferative disease.
- Disseminated lymphoproliferative disease is found in 57-66% of patients diagnosed with γHCD. Lymphadenopathy and constitutional symptoms are the usual features.
- Localized proliferative disease is found in approximately 25% of γHCD patients. This is characterized by a localization of the mutated heavy chains in extramedullary tissue, or solely in the bone marrow.
- No apparent proliferative disease is seen in 9-17% of patients with γHCD, and there is almost always an underlying autoimmune disorder.
The treatment of peripheral neuropathy varies based on the cause of the condition, and treating the underlying condition can aid in the management of neuropathy. When peripheral neuropathy results from diabetes mellitus or prediabetes, blood sugar management is key to treatment. In prediabetes in particular, strict blood sugar control can significantly alter the course of neuropathy. In peripheral neuropathy that stems from immune-mediated diseases, the underlying condition is treated with intravenous immunoglobulin or steroids. When peripheral neuropathy results from vitamin deficiencies or other disorders, those are treated as well.
The IgM type of heavy chain disease, μHCD, is often misdiagnosed as chronic lymphoid leukemia (CLL) because the two diseases are often associated with each other and show similar symptoms.
At least one study suggests that gluten neuropathy can be effectively treated with a gluten-free diet. In the study, 35 patients with gluten neuropathy adhered to a gluten-free diet, where adherence was monitored serologically. After one year, the treatment group had improved significantly compared to the control group. The indicators of improvements were improvements of sural sensory action potential and subjective improvement of neuropathic symptoms. Subgroup analysis suggested that severe neuropathy might imply reduced capacity for recovery of the peripheral nerves or longer recovery.
Although there is no known cure for alcoholic polyneuropathy, there are a number of treatments that can control symptoms and promote independence. Physical therapy is beneficial for strength training of weakened muscles, as well as for gait and balance training.