Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Dependent on the infectious syndrome, symptoms include fever, fatigue, dry cough, headache, blurred vision, and confusion. Symptom onset is often subacute, progressively worsened over several weeks. The two most common presentations are meningitis (an infection in and around the brain) and pulmonary (lung) infection.
Detection of cryptococcal antigen (capsular material) by culture of CSF, sputum and urine provides definitive diagnosis. Blood cultures may be positive in heavy infections. India ink of the CSF is a traditional microscopic method of diagnosis, although the sensitivity is poor in early infection, and may miss 15-20% of patients with culture-positive cryptococcal meningitis. Unusual morphological forms are rarely seen. Cryptococcal antigen from cerebrospinal fluid is the best test for diagnosis of cryptococcal meningitis in terms of sensitivity. Apart from conventional methods of detection like direct microscopy and culture, rapid diagnostic methods to detect cryptococcal antigen by latex agglutination test, lateral flow immunochromatographic assay (LFA), or enzyme immunoassay (EIA). A new cryptococcal antigen LFA was FDA approved in July 2011. Polymerase chain reaction (PCR) has been used on tissue specimens.
Cryptococcosis can rarely occur in the non-immunosuppressed people, particularly with "Cryptococcus gattii".
Cryptococcosis is a very subacute infection with a prolonged subclinical phase lasting weeks to months in persons with HIV/AIDS before the onset of symptomatic meningitis. In Sub-Saharan Africa, the prevalence rates of detectable cryptococcal antigen in peripheral blood is often 4–12% in persons with CD4 counts lower than 100 cells/mcL.
Cryptococcal antigen screen and preemptive treatment with fluconazole is cost saving to the healthcare system by avoiding cryptococcal meningitis. The World Health Organization recommends cryptococcal antigen screening in HIV-infected persons entering care with CD4<100 cells/μL. This undetected subclinical cryptococcal (if not preemptively treated with anti-fungal therapy) will often go on to develop cryptococcal meningitis, despite receiving HIV therapy. Cryptococcosis accounts for 20-25% of the mortality after initiating HIV therapy in Africa. What is effective preemptive treatment is unknown, with the current recommendations on dose and duration based on expert opinion. Screening in the United States is controversial, with official guidelines not recommending screening, despite cost-effectiveness and a 3% U.S. cryptococcal antigen prevalence in CD4<100 cells/μL.
"Penicillium marneffei" demonstrates in vitro susceptibility to multiple antifungal agents including ketoconazole, itraconazole, miconazole, flucytosine, and amphotericin B. Without treatment patients have a poor prognosis; death occur by liver failure as the fungus releases toxins in the bloodstream. The elevation of liver enzyme in the blood helps to establish a diagnosis.
On chest X-ray and CT, pulmonary aspergillosis classically manifests as a halo sign, and, later, an air crescent sign.
In hematologic patients with invasive aspergillosis, the galactomannan test can make the diagnosis in a noninvasive way. False positive "Aspergillus" galactomannan tests have been found in patients on intravenous treatment with some antibiotics or fluids containing gluconate or citric acid such as some transfusion platelets, parenteral nutrition or PlasmaLyte.
On microscopy, "Aspergillus" species are reliably demonstrated by silver stains, e.g., Gridley stain or Gomori methenamine-silver. These give the fungal walls a gray-black colour. The hyphae of "Aspergillus" species range in diameter from 2.5 to 4.5 µm. They have septate hyphae, but these are not always apparent, and in such cases they may be mistaken for Zygomycota. "Aspergillus" hyphae tend to have dichotomous branching that is progressive and primarily at acute angles of about 45°.
Diagnosis is usually made by identification of the fungi from clinical specimens. Biopsies of skin lesions, lymph nodes, and bone marrow demonstrate the presence of organisms on histopathology.
The most common symptoms are fever, skin lesions, anemia, generalized lymphadenopathy, and hepatomegaly.
The current medical treatments for aggressive invasive aspergillosis include voriconazole and liposomal amphotericin B in combination with surgical debridement.
For the less aggressive allergic bronchopulmonary aspergillosis findings suggest the use of oral steroids for a prolonged period of time, preferably for 6–9 months in allergic aspergillosis of the lungs. Itraconazole is given with the steroids, as it is considered to have a "steroid sparing" effect, causing the steroids to be more effective, allowing a lower dose.,
Other drugs used, such as amphotericin B, caspofungin (in combination therapy only), flucytosine (in combination therapy only), or itraconazole,
are used to treat this fungal infection. However, a growing proportion of infections are resistant to the triazoles. "A. fumigatus", the most commonly infecting species, is intrinsically resistant to fluconazole.
One strategy for the prevention of infection transmission between cats and people is to better educate people on the behaviour that puts them at risk for becoming infected.
Those at the highest risk of contracting a disease from a cat are those with behaviors that include: being licked, sharing food, sharing kithchen utensils, kissing, and sleeping with a cat. The very young, the elderly and those who are immunocompromised increase their risk of becoming infected when sleeping with their cats (and dogs). The CDC recommends that cat owners not allow a cat to lick your face because it can result in disease transmission. If someone is licked on their face, mucous membranes or an open wound, the risk for infection is reduced if the area is immediately washed with soap and water. Maintaining the health of the animal by regular inspection for fleas and ticks, scheduling deworming medications along with veterinary exams will also reduce the risk of acquiring a feline zoonosis.
Recommendations for the prevention of ringworm transmission to people include:
- regularly vacuuming areas of the home that pets commonly visit helps to remove fur or flakes of skin
- washing the hands with soap and running water after playing with or petting your pet.
- wearing gloves and long sleeves when handling cats infected with.
- disinfect areas the pet has spent time in, including surfaces and bedding.
- the spores of this fungus can be killed with common disinfectants like chlorine bleach diluted 1:10 (1/4 cup in 1 gallon of water), benzalkonium chloride, or strong detergents.
- not handling cats with ringworm by those whose immune system is weak in any way (if you have HIV/AIDS, are undergoing cancer treatment, or are taking medications that suppress the immune system, for example).
- taking the cat to the veterinarian if ringworm infection is suspected.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
Systemic mycoses due to opportunistic pathogens are infections of patients with immune deficiencies who would otherwise not be infected. Examples of immunocompromised conditions include AIDS, alteration of normal flora by antibiotics, immunosuppressive therapy, and metastatic cancer. Examples of opportunistic mycoses include Candidiasis, Cryptococcosis and Aspergillosis.
Keeping the skin clean and dry, as well as maintaining good hygiene, will help larger topical mycoses. Because fungal infections are contagious, it is important to wash after touching other people or animals. Sports clothing should also be washed after use.
Initial diagnosis may be via symptoms, but is usually confirmed via an antigen and antibody test. A PCR-based test is also available. Although any of these tests can confirm psittacosis, false negatives are possible and so a combination of clinical and lab tests is recommended before giving the bird a clean bill of health. It may die within three weeks.
Blood analysis shows leukopenia, thrombocytopenia and moderately elevated liver enzymes. Differential diagnosis must be made with typhus, typhoid and atypical pneumonia by Mycoplasma, Legionella or Q fever. Exposure history is paramount to diagnosis.
Diagnosis involves microbiological cultures from respiratory secretions of patients or serologically with a fourfold or greater increase in antibody titers against "C. psittaci" in blood samples combined with the probable course of the disease. Typical inclusions called "Leventhal-Cole-Lillie bodies" can be seen within macrophages in BAL (bronchoalveolar lavage) fluid. Culture of "C. psittaci" is hazardous and should only be carried out in biosafety laboratories.
Although infection of avian reovirus is spread worldwide, it is rarely the sole cause of a disease. For chickens, the most common manifestation of the disease is joint/limb lameness. Confirming infection of avian reovirus can be detected through an ELISA test by using and observing the expression of σC and σB proteins. However, isolating and identifying reoviruses from tissue samples is very time consuming. Isolation is most successfully attained through inoculation of material into chick embryo cultures or fertile chicken eggs. Inoculation of embryonic eggs through the yolk sac has shown that the virus usually kills the embryos within 5 or 6 days post inoculation. Analyzing the samples, the embryos appeared hemorrhagic and necrotic lesions on the liver were present. (Jones, Onunkwo, 1978). There have also been approaches to identify avian reoviruses molecularly by observing infected tissues with dot-blot hybridization, PCR, and a combination of PCR and RFLP. This combination allows for the reovirus strain to be typed.
Patients with symptoms of CAP require evaluation. Diagnosis of pneumonia is made clinically, rather than on the basis of a particular test. Evaluation begins with a physical examination by a health provider, which may reveal fever, an increased respiratory rate (tachypnea), low blood pressure (hypotension), a fast heart rate (tachycardia) and changes in the amount of oxygen in the blood. Palpating the chest as it expands and tapping the chest wall (percussion) to identify dull, non-resonant areas can identify stiffness and fluid, signs of CAP. Listening to the lungs with a stethoscope (auscultation) can also reveal signs associated with CAP. A lack of normal breath sounds or the presence of crackles can indicate fluid consolidation. Increased vibration of the chest when speaking, known as tactile fremitus, and increased volume of whispered speech during auscultation can also indicate fluid.
When signs of pneumonia are discovered during evaluation, chest X-rays, are performed to support a diagnosis of CAP, and examination of the blood and sputum for infectious microorganisms and blood tests may be used to support a diagnosis of CAP. Diagnostic tools depend on the severity of illness, local practices and concern about complications of the infection. All patients with CAP should have their blood oxygen monitored with pulse oximetry. In some cases, arterial blood gas analysis may be required to determine the amount of oxygen in the blood. A complete blood count (CBC) may reveal extra white blood cells, indicating infection.
Chest X-rays and X-ray computed tomography (CT) can reveal areas of opacity (seen as white), indicating consolidation. CAP does not always appear on x-rays, because the disease is in its initial stages or involves a part of the lung an x-ray does not see well. In some cases, chest CT can reveal pneumonia not seen on x-rays. However, congestive heart failure or other types of lung damage can mimic CAP on x-rays.
Several tests can identify the cause of CAP. Blood cultures can isolate bacteria or fungi in the bloodstream. Sputum Gram staining and culture can also reveal the causative microorganism. In severe cases, bronchoscopy can collect fluid for culture. Special tests can be performed if an uncommon microorganism is suspected, such as urinalysis for Legionella antigen in Legionnaires' disease.
Feline zoonosis are the viral, bacterial, fungal, protozoan, nematode and arthropod infections that can be transmitted to humans from the domesticated cat, "Felis catus". Some of these are diseases are reemerging and newly emerging infections or infestations caused by zoonotic pathogens transmitted by cats. In some instances, the cat can display symptoms of infection (these may differ from the symptoms in humans) and sometimes the cat remains asymptomatic. There can be serious illnesses and clinical manifestations in people who become infected. This is dependent on the immune status and age of the person. Those who live in close association with cats are more prone to these infections. But those that do not keep cats as pets are also able to acquire these infections because of the transmission can be from cat feces and the parasites that leave their bodies.
People can acquire cat-associated infections through bites, scratches or other direct contact of the skin or mucous membranes with the cat. This includes 'kissing' or letting the animal lick the mouth or nose. Mucous membranes are easily infected when the pathogen is in the mouth of the cat. Pathogens can also infect people when there is contact with animal saliva, urine and other body fluids or secretions, When fecal material is unintentionally ingested, infection can occur. Feline zooinosis can be acquired by a person by inhalation of aerosols or droplets coughed up by the cat.
In the United States, forty percent of homes have at least one cat. Some contagious infections such as campylobacteriosis and salmonellosis cause visible symptoms of the disease in cats. Other infections, such as cat scratch disease and toxoplasmosis, have no visible symptoms and are carried by apparently healthy cats.
Antibody detection can be useful to indicate schistosome infection in people who have traveled to areas where schistosomiasis is common and in whom eggs cannot be demonstrated in fecal or urine specimens. Test sensitivity and specificity vary widely among the many tests reported for the serologic diagnosis of schistosomiasis and are dependent on both the type of antigen preparations used (crude, purified, adult worm, egg, cercarial) and the test procedure.
At CDC, a combination of tests with purified adult worm antigens is used for antibody detection. All serum specimens are tested by FAST-ELISA using "S. mansoni" adult microsomal antigen (MAMA). A positive reaction (greater than 9 units/µl serum) indicates infection with "Schistosoma" species. Sensitivity for "S. mansoni" infection is 99 percent, 95 percent for "S. haematobium" infection, and less than 50 percent for "S. japonicum" infection. Specificity of this assay for detecting schistosome infection is 99 percent. Because test sensitivity with the FAST-ELISA is reduced for species other than "S. mansoni", immunoblots of the species appropriate to the patient's travel history are also tested to ensure detection of "S. haematobium" and "S. japonicum" infections. Immunoblots with adult worm microsomal antigens are species-specific and so a positive reaction indicates the infecting species. The presence of antibody is indicative only of schistosome infection at some time and cannot be correlated with clinical status, worm burden, egg production, or prognosis. Where a person has traveled can help determine what "Schistosoma" species to test for by immunoblot.
In 2005, a field evaluation of a novel handheld microscope was undertaken in Uganda for the diagnosis of intestinal schistosomiasis by a team led by Russell Stothard from the Natural History Museum of London, working with the Schistosomiasis Control Initiative, London.
Several diseases can present with similar signs and symptoms to pneumonia, such as: chronic obstructive pulmonary disease (COPD), asthma, pulmonary edema, bronchiectasis, lung cancer, and pulmonary emboli. Unlike pneumonia, asthma and COPD typically present with wheezing, pulmonary edema presents with an abnormal electrocardiogram, cancer and bronchiectasis present with a cough of longer duration, and pulmonary emboli presents with acute onset sharp chest pain and shortness of breath.
CAP may be prevented by treating underlying illnesses increasing its risk, by smoking cessation and vaccination of children and adults. Vaccination against "haemophilus influenzae" and "streptococcus pneumoniae" in the first year of life has reduced their role in childhood CAP. A vaccine against "streptococcus pneumoniae", available for adults, is recommended for healthy individuals over 65 and all adults with COPD, heart failure, diabetes mellitus, cirrhosis, alcoholism, cerebrospinal fluid leaks or who have had a splenectomy. Re-vaccination may be required after five or ten years.
Patients who are vaccinated against "streptococcus pneumoniae", health professionals, nursing-home residents and pregnant women should be vaccinated annually against influenza. During an outbreak, drugs such as amantadine, rimantadine, zanamivir and oseltamivir have been demonstrated to prevent influenza.
Chicken respiratory diseases are difficult to differentiate and may not be diagnosed based on respiratory signs and lesions. Other diseases such as mycoplasmosis by Mycoplasma gallisepticum (chronic respiratory disease), Newcastle disease by mesogenic strains of Newcastle diseases virus (APMV-1), avian metapneumovirus, infectious laryngotracheitis, avian infectious coryza in some stages may clinically resemble IB. Similar kidney lesions may be caused by different etiologies, including other viruses, such as infectious bursal disease virus (the cause of Gumboro disease) and toxins (for instance ochratoxins of Aspergillus ochraceus), and dehydration.
In laying hens, abnormal and reduced egg production are also observed in Egg Drop Syndrome 76 (EDS), caused by an Atadenovirus and avian metapneumovirus infections. At present, IB is more common and far more spread than EDS. The large genetic and phenotypic diversity of IBV have been resulting in common vaccination failures. In addition, new strains of IBV, not present in commercial vaccines, can cause the disease in IB vaccinated flocks. Attenuated vaccines will revert to virulence by consecutive passage in chickens in densely populated areas, and may reassort with field strains, generating potentially important variants.
Definitive diagnosis relies on viral isolation and characterization. For virus characterization, recent methodology using genomic amplification (PCR) and sequencing of products, will enable very precise description of strains, according to the oligonucleotide primers designed and target gene. Methods for IBV antigens detection may employ labelled antibodies, such as direct immunofluorescence or immunoperoxidase. Antibodies to IBV may be detected by indirect immunofluorescent antibody test, ELISA and Haemagglutination inhibition (haemagglutinating IBV produced after enzymatic treatment by phospholipase C).
Diagnosis of infection is confirmed by the identification of eggs in stools. Eggs of "S. mansoni" are approximately 140 by 60 µm in size, and have a lateral spine. The diagnosis is improved by the use of the Kato-Katz technique (a semi-quantitative stool examination technique). Other methods that can be used are enzyme-linked immunosorbent assay (ELISA), circumoval precipitation test, and alkaline phosphatase immunoassay.
Microscopic identification of eggs in stool or urine is the most practical method for diagnosis. Stool examination should be performed when infection with "S. mansoni" or "S. japonicum" is suspected, and urine examination should be performed if "S. haematobium" is suspected. Eggs can be present in the stool in infections with all "Schistosoma" species. The examination can be performed on a simple smear (1 to 2 mg of fecal material). Since eggs may be passed intermittently or in small amounts, their detection will be enhanced by repeated examinations and/or concentration procedures. In addition, for field surveys and investigational purposes, the egg output can be quantified by using the Kato-Katz technique (20 to 50 mg of fecal material) or the Ritchie technique. Eggs can be found in the urine in infections with "S. haematobium" (recommended time for collection: between noon and 3 PM) and with "S. japonicum". Quantification is possible by using filtration through a nucleopore filter membrane of a standard volume of urine followed by egg counts on the membrane. Tissue biopsy (rectal biopsy for all species and biopsy of the bladder for "S. haematobium") may demonstrate eggs when stool or urine examinations are negative.
Ventilator-associated pneumonia occurs in people breathing with the help of mechanical ventilation (specifically, it is pneumonia that arises more than 48 to 72 hours after endotracheal intubation). Like any medical device, ventilators involve some risk of infection because of how difficult it is to prevent bacteria from colonizing the internal parts and surfaces, even with diligent cleaning. People who need ventilators typically are rather ill, to begin with, so a superimposed pneumonia is not always easily managed. Immunodeficiency may be involved because of poor nutritional status and whichever disorders are comorbid.
An airborne disease can be caused by exposure to a source: an infected patient or animal, by being transferred from the infected person or animal’s mouth, nose, cut, or needle puncture. People receive the disease through a portal of entry: mouth, nose, cut, or needle puncture.
Diagnosis of lymphoid tumors in poultry is complicated due to multiple etiological agents capable of causing very similar tumors. It is not uncommon that more than one avian tumor virus can be present in a chicken, thus one must consider both the diagnosis of the disease/tumors (pathological diagnosis) and of the virus (etiological diagnosis). A step-wise process has been proposed for diagnosis of Marek’s disease which includes (1) history, epidemiology, clinical observations and gross necropsy, (2) characteristics of the tumor cell, and (3) virological characteristics
The demonstration of peripheral nerve enlargement along with suggestive clinical signs in a bird that is around three to four months old (with or without visceral tumors) is highly suggestive of Marek's disease. Histological examination of nerves reveals infiltration of pleomorphic neoplastic and inflammatory lymphocytes. Peripheral neuropathy should also be considered as a principal rule-out in young chickens with paralysis and nerve enlargement without visceral tumors, especially in nerves with interneuritic edema and infiltration of plasma cells.
The presence of nodules on the internal organs may also suggest Marek's disease, but further testing is required for confirmation. This is done through histological demonstration of lymphomatous infiltration into the affected tissue. A range of leukocytes can be involved, including lymphocytic cell lines such as large lymphocyte, lymphoblast, primitive reticular cells, and occasional plasma cells, as well as macrophage and plasma cells. The T cells are involved in the malignancy, showing neoplastic changes with evidence of mitosis. The lymphomatous infiltrates need to be differentiated from other conditions that affect poultry including lymphoid leukosis and reticuloendotheliosis, as well as an inflammatory event associated with hyperplastic changes of the affected tissue.
Key clinical signs as well as gross and microscopic features that are most useful for differentiating Marek’s disease from lymphoid leukosis and reticuloendotheliosis include (1) Age: MD can affect birds at any age, including 5% in unvaccinated flocks; (4) Potential nerve enlargement; (5) Interfollicular tumors in the bursa of Fabricius; (6) CNS involvement; (7) Lymphoid proliferation in skin and feather follicles; (8) Pleomorphic lymphoid cells in nerves and tumors; and (9) T-cell lymphomas.
In addition to gross pathology and histology, other advanced procedures used for a definitive diagnosis of Marek’s disease include immunohistochemistry to identify cell type and virus-specific antigens, standard and quantitative PCR for identification of the virus, virus isolation to confirm infections, and serology to confirm/exclude infections.
The World Organisation for Animal Health (OIE) reference laboratories for Marek’s disease include the Pirbright Institute, UK and the USDA Avian Disease and Oncology Laboratory, USA.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
Cat flu is the common name for a feline upper respiratory tract disease. While feline upper respiratory disease can be caused by several different pathogens, there are few symptoms that they have in common.
While Avian Flu can also infect cats, Cat flu is generally a misnomer, since it usually does not refer to an infection by an influenza virus. Instead, it is a syndrome, a term referring to the fact that patients display a number of symptoms that can be caused by one or more of the following infectious agents (pathogens):
1. Feline herpes virus causing feline viral rhinotracheitis (cat common cold, this is the disease that is closely similar to cat flu)
2. Feline calicivirus—(cat respiratory disease)
3. "Bordetella bronchiseptica"—(cat kennel cough)
4. "Chlamydophila felis"—(chlamydia)
In South Africa the term cat flu is also used to refer to Canine Parvo Virus. This is misleading, as transmission of the Canine Parvo Virus rarely involves cats.