Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
On chest X-ray and CT, pulmonary aspergillosis classically manifests as a halo sign, and, later, an air crescent sign.
In hematologic patients with invasive aspergillosis, the galactomannan test can make the diagnosis in a noninvasive way. False positive "Aspergillus" galactomannan tests have been found in patients on intravenous treatment with some antibiotics or fluids containing gluconate or citric acid such as some transfusion platelets, parenteral nutrition or PlasmaLyte.
On microscopy, "Aspergillus" species are reliably demonstrated by silver stains, e.g., Gridley stain or Gomori methenamine-silver. These give the fungal walls a gray-black colour. The hyphae of "Aspergillus" species range in diameter from 2.5 to 4.5 µm. They have septate hyphae, but these are not always apparent, and in such cases they may be mistaken for Zygomycota. "Aspergillus" hyphae tend to have dichotomous branching that is progressive and primarily at acute angles of about 45°.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
Blood analysis shows leukopenia, thrombocytopenia and moderately elevated liver enzymes. Differential diagnosis must be made with typhus, typhoid and atypical pneumonia by Mycoplasma, Legionella or Q fever. Exposure history is paramount to diagnosis.
Diagnosis involves microbiological cultures from respiratory secretions of patients or serologically with a fourfold or greater increase in antibody titers against "C. psittaci" in blood samples combined with the probable course of the disease. Typical inclusions called "Leventhal-Cole-Lillie bodies" can be seen within macrophages in BAL (bronchoalveolar lavage) fluid. Culture of "C. psittaci" is hazardous and should only be carried out in biosafety laboratories.
The current medical treatments for aggressive invasive aspergillosis include voriconazole and liposomal amphotericin B in combination with surgical debridement.
For the less aggressive allergic bronchopulmonary aspergillosis findings suggest the use of oral steroids for a prolonged period of time, preferably for 6–9 months in allergic aspergillosis of the lungs. Itraconazole is given with the steroids, as it is considered to have a "steroid sparing" effect, causing the steroids to be more effective, allowing a lower dose.,
Other drugs used, such as amphotericin B, caspofungin (in combination therapy only), flucytosine (in combination therapy only), or itraconazole,
are used to treat this fungal infection. However, a growing proportion of infections are resistant to the triazoles. "A. fumigatus", the most commonly infecting species, is intrinsically resistant to fluconazole.
Lymphoid leucosis is a disease that affects chickens, caused by the retrovirus "Avian leukosis virus".
It is a neoplastic disease caused by a virus, which may take the form of a tumor of the bursa of Fabricius and may metastasize to other tissues of the chicken and cause enlargement and swelling of the abdomen.
Diagnosis of lymphoid tumors in poultry is complicated due to multiple etiological agents capable of causing very similar tumors. It is not uncommon that more than one avian tumor virus can be present in a chicken, thus one must consider both the diagnosis of the disease/tumors (pathological diagnosis) and of the virus (etiological diagnosis). A step-wise process has been proposed for diagnosis of Marek’s disease which includes (1) history, epidemiology, clinical observations and gross necropsy, (2) characteristics of the tumor cell, and (3) virological characteristics
The demonstration of peripheral nerve enlargement along with suggestive clinical signs in a bird that is around three to four months old (with or without visceral tumors) is highly suggestive of Marek's disease. Histological examination of nerves reveals infiltration of pleomorphic neoplastic and inflammatory lymphocytes. Peripheral neuropathy should also be considered as a principal rule-out in young chickens with paralysis and nerve enlargement without visceral tumors, especially in nerves with interneuritic edema and infiltration of plasma cells.
The presence of nodules on the internal organs may also suggest Marek's disease, but further testing is required for confirmation. This is done through histological demonstration of lymphomatous infiltration into the affected tissue. A range of leukocytes can be involved, including lymphocytic cell lines such as large lymphocyte, lymphoblast, primitive reticular cells, and occasional plasma cells, as well as macrophage and plasma cells. The T cells are involved in the malignancy, showing neoplastic changes with evidence of mitosis. The lymphomatous infiltrates need to be differentiated from other conditions that affect poultry including lymphoid leukosis and reticuloendotheliosis, as well as an inflammatory event associated with hyperplastic changes of the affected tissue.
Key clinical signs as well as gross and microscopic features that are most useful for differentiating Marek’s disease from lymphoid leukosis and reticuloendotheliosis include (1) Age: MD can affect birds at any age, including 5% in unvaccinated flocks; (4) Potential nerve enlargement; (5) Interfollicular tumors in the bursa of Fabricius; (6) CNS involvement; (7) Lymphoid proliferation in skin and feather follicles; (8) Pleomorphic lymphoid cells in nerves and tumors; and (9) T-cell lymphomas.
In addition to gross pathology and histology, other advanced procedures used for a definitive diagnosis of Marek’s disease include immunohistochemistry to identify cell type and virus-specific antigens, standard and quantitative PCR for identification of the virus, virus isolation to confirm infections, and serology to confirm/exclude infections.
The World Organisation for Animal Health (OIE) reference laboratories for Marek’s disease include the Pirbright Institute, UK and the USDA Avian Disease and Oncology Laboratory, USA.
Initial diagnosis may be via symptoms, but is usually confirmed via an antigen and antibody test. A PCR-based test is also available. Although any of these tests can confirm psittacosis, false negatives are possible and so a combination of clinical and lab tests is recommended before giving the bird a clean bill of health. It may die within three weeks.
Chicken respiratory diseases are difficult to differentiate and may not be diagnosed based on respiratory signs and lesions. Other diseases such as mycoplasmosis by Mycoplasma gallisepticum (chronic respiratory disease), Newcastle disease by mesogenic strains of Newcastle diseases virus (APMV-1), avian metapneumovirus, infectious laryngotracheitis, avian infectious coryza in some stages may clinically resemble IB. Similar kidney lesions may be caused by different etiologies, including other viruses, such as infectious bursal disease virus (the cause of Gumboro disease) and toxins (for instance ochratoxins of Aspergillus ochraceus), and dehydration.
In laying hens, abnormal and reduced egg production are also observed in Egg Drop Syndrome 76 (EDS), caused by an Atadenovirus and avian metapneumovirus infections. At present, IB is more common and far more spread than EDS. The large genetic and phenotypic diversity of IBV have been resulting in common vaccination failures. In addition, new strains of IBV, not present in commercial vaccines, can cause the disease in IB vaccinated flocks. Attenuated vaccines will revert to virulence by consecutive passage in chickens in densely populated areas, and may reassort with field strains, generating potentially important variants.
Definitive diagnosis relies on viral isolation and characterization. For virus characterization, recent methodology using genomic amplification (PCR) and sequencing of products, will enable very precise description of strains, according to the oligonucleotide primers designed and target gene. Methods for IBV antigens detection may employ labelled antibodies, such as direct immunofluorescence or immunoperoxidase. Antibodies to IBV may be detected by indirect immunofluorescent antibody test, ELISA and Haemagglutination inhibition (haemagglutinating IBV produced after enzymatic treatment by phospholipase C).
Traditional diagnosis included radiographs. The vet may ask for a follow up radiograph with a barium marker to collect more data on digestion to aid in confirmation of PDD. A tissue sample is a more reliable method as well but invasive yet the only definitive diagnosis with live parrots.
The presence of avian bornaviruses may be detected in two ways: Testing fecal samples, cloanal swabs and blood for the presence of the virus or examining the bird's blood for ABV-specific antibodies by western blot or ELISA.
All tests give a percentage of false positives and false negatives so detection of ABV or antibody against it does not mean that PDD will follow. The disease does not follow a clear path of development or transmission.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Symptoms include enlargement of abdomen, bursa, weight loss, weakness and emaciation, and depression. The disease is more likely to affect chicken around five to eight months of age who are more vulnerable. Green diarrhea tends to develops at the terminal stage.
Although infection of avian reovirus is spread worldwide, it is rarely the sole cause of a disease. For chickens, the most common manifestation of the disease is joint/limb lameness. Confirming infection of avian reovirus can be detected through an ELISA test by using and observing the expression of σC and σB proteins. However, isolating and identifying reoviruses from tissue samples is very time consuming. Isolation is most successfully attained through inoculation of material into chick embryo cultures or fertile chicken eggs. Inoculation of embryonic eggs through the yolk sac has shown that the virus usually kills the embryos within 5 or 6 days post inoculation. Analyzing the samples, the embryos appeared hemorrhagic and necrotic lesions on the liver were present. (Jones, Onunkwo, 1978). There have also been approaches to identify avian reoviruses molecularly by observing infected tissues with dot-blot hybridization, PCR, and a combination of PCR and RFLP. This combination allows for the reovirus strain to be typed.
One strategy for the prevention of infection transmission between cats and people is to better educate people on the behaviour that puts them at risk for becoming infected.
Those at the highest risk of contracting a disease from a cat are those with behaviors that include: being licked, sharing food, sharing kithchen utensils, kissing, and sleeping with a cat. The very young, the elderly and those who are immunocompromised increase their risk of becoming infected when sleeping with their cats (and dogs). The CDC recommends that cat owners not allow a cat to lick your face because it can result in disease transmission. If someone is licked on their face, mucous membranes or an open wound, the risk for infection is reduced if the area is immediately washed with soap and water. Maintaining the health of the animal by regular inspection for fleas and ticks, scheduling deworming medications along with veterinary exams will also reduce the risk of acquiring a feline zoonosis.
Recommendations for the prevention of ringworm transmission to people include:
- regularly vacuuming areas of the home that pets commonly visit helps to remove fur or flakes of skin
- washing the hands with soap and running water after playing with or petting your pet.
- wearing gloves and long sleeves when handling cats infected with.
- disinfect areas the pet has spent time in, including surfaces and bedding.
- the spores of this fungus can be killed with common disinfectants like chlorine bleach diluted 1:10 (1/4 cup in 1 gallon of water), benzalkonium chloride, or strong detergents.
- not handling cats with ringworm by those whose immune system is weak in any way (if you have HIV/AIDS, are undergoing cancer treatment, or are taking medications that suppress the immune system, for example).
- taking the cat to the veterinarian if ringworm infection is suspected.
Cats can be protected from H5N1 if they are given a vaccination, as mentioned above. However, it was also found that cats can still shed some of the virus but in low numbers.
If a cat is exhibiting symptoms, they should be put into isolation and kept indoors. Then they should be taken to a vet to get tested for the presence of H5N1. If there is a possibility that the cat has Avian Influenza, then there should be extra care when handling the cat. Some of the precautions include avoiding all direct contact with the cat by wearing gloves, masks, and goggles. Whatever surfaces the cat comes in contact with should be disinfected with standard household cleaners.
They have given tigers an antiviral treatment of Oseltamivir with a dose of 75 mg/60 kg two times a day. The specific dosage was extrapolated from human data, but there hasn't been any data to suggest protection. As with many antiviral treatments, the dosage depends on the species.
BFL symptoms improve in the absence of the bird proteins which caused the disease. Therefore, it is advisable to remove all birds, bedding and pillows containing feathers from the house as well as washing all soft furnishings, walls, ceilings and furniture. Certain small mammals kept as pets have the same or similar proteins in their fur and feces and so should be removed. Peak flow measurements will indicate a lung condition however a spirometric test on lung capacity and patients ability to move air in and out of the lungs plus in more advanced cases an X-ray test or CT scan is available to confirm whether someone has the disease or not. Steroid inhalers similar to those used for asthma are effective or in cases where the patient finds inhaling difficult high dosages of steroids combined with bone density protecting drugs are used to treat a person with BFL, reducing the inflammation and hopefully preventing scarring. Recovery varies from patient to patient depending on what stage the condition was at when the patient consulted the doctor, the speed of diagnosis and application of the appropriate treatment to prevent residual damage to the lungs and many make a full recovery. However, BFL may reoccur when in contact with birds or other allergens.
Patients with symptoms of CAP require evaluation. Diagnosis of pneumonia is made clinically, rather than on the basis of a particular test. Evaluation begins with a physical examination by a health provider, which may reveal fever, an increased respiratory rate (tachypnea), low blood pressure (hypotension), a fast heart rate (tachycardia) and changes in the amount of oxygen in the blood. Palpating the chest as it expands and tapping the chest wall (percussion) to identify dull, non-resonant areas can identify stiffness and fluid, signs of CAP. Listening to the lungs with a stethoscope (auscultation) can also reveal signs associated with CAP. A lack of normal breath sounds or the presence of crackles can indicate fluid consolidation. Increased vibration of the chest when speaking, known as tactile fremitus, and increased volume of whispered speech during auscultation can also indicate fluid.
When signs of pneumonia are discovered during evaluation, chest X-rays, are performed to support a diagnosis of CAP, and examination of the blood and sputum for infectious microorganisms and blood tests may be used to support a diagnosis of CAP. Diagnostic tools depend on the severity of illness, local practices and concern about complications of the infection. All patients with CAP should have their blood oxygen monitored with pulse oximetry. In some cases, arterial blood gas analysis may be required to determine the amount of oxygen in the blood. A complete blood count (CBC) may reveal extra white blood cells, indicating infection.
Chest X-rays and X-ray computed tomography (CT) can reveal areas of opacity (seen as white), indicating consolidation. CAP does not always appear on x-rays, because the disease is in its initial stages or involves a part of the lung an x-ray does not see well. In some cases, chest CT can reveal pneumonia not seen on x-rays. However, congestive heart failure or other types of lung damage can mimic CAP on x-rays.
Several tests can identify the cause of CAP. Blood cultures can isolate bacteria or fungi in the bloodstream. Sputum Gram staining and culture can also reveal the causative microorganism. In severe cases, bronchoscopy can collect fluid for culture. Special tests can be performed if an uncommon microorganism is suspected, such as urinalysis for Legionella antigen in Legionnaires' disease.
The presence of avian botulism is extremely hard to detect before an outbreak. Frequent surveillance of sites at risk is needed for early detection of the disease in order to take action and remove carcasses. Vaccines are also developed, but they are expected to have limited effectiveness in stemming outbreaks in wild waterbird populations. However may be effective in reducing mortality for endangered island waterfowl and small non-migratory wild populations. Field tests are needed.
Several diseases can present with similar signs and symptoms to pneumonia, such as: chronic obstructive pulmonary disease (COPD), asthma, pulmonary edema, bronchiectasis, lung cancer, and pulmonary emboli. Unlike pneumonia, asthma and COPD typically present with wheezing, pulmonary edema presents with an abnormal electrocardiogram, cancer and bronchiectasis present with a cough of longer duration, and pulmonary emboli presents with acute onset sharp chest pain and shortness of breath.
Vaccination is the only known method to prevent the development of tumors when chickens are infected with the virus. However, administration of vaccines does not prevent transmission of the virus, i.e., the vaccine is not sterilizing. However, it does reduce the amount of virus shed in the dander, hence reduces horizontal spread of the disease. Marek's disease does not spread vertically. The vaccine was introduced in 1970 and the scientist credited with its development is Dr. Ben Roy Burmester and Dr. Frank J Siccardi. Before that, Marek's disease caused substantial revenue loss in the poultry industries of the United States and the United Kingdom. The vaccine can be administered to one-day-old chicks through subcutaneous inoculation or by "in ovo" vaccination when the eggs are transferred from the incubator to the hatcher. "In ovo" vaccination is the preferred method, as it does not require handling of the chicks and can be done rapidly by automated methods. Immunity develops within two weeks.
The vaccine originally contained the antigenically similar turkey herpesvirus, which is serotype 3 of MDV. However, because vaccination does not prevent infection with the virus, the Marek's disease virus has evolved increased virulence and resistance to this vaccine. As a result, current vaccines use a combination of vaccines consisting of HVT and gallid herpesvirus type 3 or an attenuated MDV strain, CVI988-Rispens (ATCvet code: ).
Cat flu is the common name for a feline upper respiratory tract disease. While feline upper respiratory disease can be caused by several different pathogens, there are few symptoms that they have in common.
While Avian Flu can also infect cats, Cat flu is generally a misnomer, since it usually does not refer to an infection by an influenza virus. Instead, it is a syndrome, a term referring to the fact that patients display a number of symptoms that can be caused by one or more of the following infectious agents (pathogens):
1. Feline herpes virus causing feline viral rhinotracheitis (cat common cold, this is the disease that is closely similar to cat flu)
2. Feline calicivirus—(cat respiratory disease)
3. "Bordetella bronchiseptica"—(cat kennel cough)
4. "Chlamydophila felis"—(chlamydia)
In South Africa the term cat flu is also used to refer to Canine Parvo Virus. This is misleading, as transmission of the Canine Parvo Virus rarely involves cats.
An airborne disease can be caused by exposure to a source: an infected patient or animal, by being transferred from the infected person or animal’s mouth, nose, cut, or needle puncture. People receive the disease through a portal of entry: mouth, nose, cut, or needle puncture.
In patients managed in the community, determining the causative agent is not cost-effective and typically does not alter management. For people who do not respond to treatment, sputum culture should be considered, and culture for "Mycobacterium tuberculosis" should be carried out in persons with a chronic productive cough. Testing for other specific organisms may be recommended during outbreaks, for public health reasons. In those hospitalized for severe disease, both sputum and blood cultures are recommended, as well as testing the urine for antigens to "Legionella" and "Streptococcus". Viral infections can be confirmed via detection of either the virus or its antigens with culture or polymerase chain reaction (PCR), among other techniques. The causative agent is determined in only 15% of cases with routine microbiological tests.
Some CAP patients require intensive care, with clinical prediction rules such as the pneumonia severity index and CURB-65 guiding the decision to hospitalize. Factors increasing the need for hospitalization include:
- Age greater than 65
- Underlying chronic illnesses
- Respiratory rate greater than 30 per minute
- Systolic blood pressure less than 90 mmHg
- Heart rate greater than 125 per minute
- Temperature below 35 or over 40 °C
- Confusion
- Evidence of infection outside the lung
Laboratory results indicating hospitalization include:
- Arterial oxygen tension less than 60 mm Hg
- Carbon dioxide over 50 mmHg or pH under 7.35 while breathing room air
- Hematocrit under 30 percent
- Creatinine over 1.2 mg/dl or blood urea nitrogen over 20 mg/dl
- White-blood-cell count under 4 × 10^9/L or over 30 × 10^9/L
- Neutrophil count under 1 x 10^9/L
X-ray findings indicating hospitalization include:
- Involvement of more than one lobe of the lung
- Presence of a cavity
- Pleural effusion
Feline zoonosis are the viral, bacterial, fungal, protozoan, nematode and arthropod infections that can be transmitted to humans from the domesticated cat, "Felis catus". Some of these are diseases are reemerging and newly emerging infections or infestations caused by zoonotic pathogens transmitted by cats. In some instances, the cat can display symptoms of infection (these may differ from the symptoms in humans) and sometimes the cat remains asymptomatic. There can be serious illnesses and clinical manifestations in people who become infected. This is dependent on the immune status and age of the person. Those who live in close association with cats are more prone to these infections. But those that do not keep cats as pets are also able to acquire these infections because of the transmission can be from cat feces and the parasites that leave their bodies.
People can acquire cat-associated infections through bites, scratches or other direct contact of the skin or mucous membranes with the cat. This includes 'kissing' or letting the animal lick the mouth or nose. Mucous membranes are easily infected when the pathogen is in the mouth of the cat. Pathogens can also infect people when there is contact with animal saliva, urine and other body fluids or secretions, When fecal material is unintentionally ingested, infection can occur. Feline zooinosis can be acquired by a person by inhalation of aerosols or droplets coughed up by the cat.
In the United States, forty percent of homes have at least one cat. Some contagious infections such as campylobacteriosis and salmonellosis cause visible symptoms of the disease in cats. Other infections, such as cat scratch disease and toxoplasmosis, have no visible symptoms and are carried by apparently healthy cats.
A cat that is infected with a high dose of the virus can show signs of fever, lethargy, and dyspnea. There have even been recorded cases where a cat has neurological symptoms such as circling or ataxia.
In a case in February 2004, a 2-year-old male cat was panting and convulsing on top of having a fever two days prior to death. This cat also had lesions that were identified as renal congestion, pulmonary congestion, edema, and pneumonia. Upon inspection, the cat also had cerebral congestion, conjunctivitis, and hemorrhaging in the serosae of the intestines.
However, a cat that is infected with a low dose of the virus may not necessarily show symptoms. Though they may be asymptomatic, they can still transfer small amounts of the virus.