Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hereditary spastic paraplegias can be classified based on the symptoms; mode of inheritance; the patient’s age at onset; the affected genes; and biochemical pathways involved.
Initial diagnosis of HSPs relies upon family history, the presence or absence of additional signs and the exclusion of other nongenetic causes of spasticity, the latter being particular important in sporadic cases.
Cerebral and spinal MRI is an important procedure performed in order to rule out other frequent neurological conditions, such as multiple sclerosis, but also to detect associated abnormalities such as cerebellar or corpus callosum atrophy as well as white matter abnormalities. Differential diagnosis of HSP should also exclude spastic diplegia which presents with nearly identical day-to-day effects and even is treatable with similar medicines such as baclofen and orthopedic surgery; at times, these two conditions may look and feel so similar that the only "perceived" difference may be HSP's hereditary nature versus the explicitly non-hereditary nature of spastic diplegia (however, unlike spastic diplegia and other forms of spastic cerebral palsy, HSP cannot be reliably treated with selective dorsal rhizotomy).
Ultimate confirmation of HSP diagnosis can only be provided by carrying out genetic tests targeted towards known genetic mutations.
Like ALS, diagnosing PLS is a diagnosis of exclusion, as there is no one test that can confirm a diagnosis of PLS. The Pringle Criteria, proposed by Pringle et al, provides a guideline of nine points that, if confirmed, can suggest a diagnosis of PLS. Due to the fact that a person with ALS may initially present with only upper motor neuron symptoms, indicative of PLS, one key aspect of the Pringle Criteria is requiring a minimum of three years between symptom onset and symptom diagnosis. When these criteria are met, a diagnosis of PLS is highly likely. Other aspects of Pringle Criteria include normal EMG findings, thereby ruling out lower motor neuron involvement that is indicative of ALS, and absence of family history for Hereditary Spastic Paraplegia (HSP) and ALS. Imaging studies to rule out structural or demyelinating lesions may be done as well. Hoffman's sign and Babinski reflex may be present and indicative of upper motor neuron damage.
In 1993, Peter James Dyck divided HSAN I further into five subtypes HSAN IA-E based on the presence of additional features. These features were thought to result from the genetic diversity of HSAN I (i.e. the expression of different genes, different alleles of a single gene, or modifying genes) or environmental factors. Molecular genetic studies later confirmed the genetic diversity of the disease.
The diagnosis of HSAN I is based on the observation of symptoms described above and is supported by a family history suggesting autosomal dominant inheritance. The diagnosis is also supported by additional tests, such as nerve conduction studies in the lower limbs to confirm a sensory and motor neuropathy. In sporadic cases, acquired neuropathies, such as the diabetic foot syndrome and alcoholic neuropathy, can be excluded by the use of magnetic resonance imaging and by interdisciplinary discussion between neurologists, dermatologists, and orthopedics.
The diagnosis of the disease has been revolutionized by the identification of the causative genes. The diagnosis is now based on the detection of the mutations by direct sequencing of the genes. Nevertheless, the accurate phenotyping of patients remains crucial in the diagnosis. For pregnant patients, termination of pregnancy is not recommended.
HSAN I must be distinguished from hereditary motor and sensory neuropathy (HMSN) and other types of hereditary sensory and autonomic neuropathies (HSAN II-V). The prominent sensory abnormalities and foot ulcerations are the only signs to separate HSAN I from HMSN. HSAN II can be differentiated from HSAN I as it is inherited as an autosomal recessive trait, it has earlier disease onset, the sensory loss is diffused to the whole body, and it has less or no motor symptoms. HSAN III-V can be easily distinguished from HSAN I because of congenital disease onset. Moreover, these types exhibit typical features, such as the predominant autonomic disturbances in HSAN III or congenital loss of pain and anhidrosis in HSAN IV.
Clinical diagnosis is conducted on individuals with age onset between late teens and late forties who show the initial characteristics for the recessive autosomal cerebellar ataxia.
The following tests are performed:
- MRI brain screening for cerebellum atrophy.
- Molecular genetic testing for SYNE-1 sequence analysis.
- Electrophysiologic studies for polyneurotherapy
- Neurological examination
Prenatal diagnosis and preimplantation genetic diagnosis (PGD) can be performed to identify the mothers carrying the recessive genes for cerebellar ataxia.
Among the methods of diagnosing tropical spastic paraparesis are MRI (magnetic resonance imaging) and lumbar puncture (which may show lymphocytosis).
Patients can often live with PLS for many years and very often outlive their neurological disease and succumb to some unrelated condition. There is currently no effective cure, and the progression of symptoms varies. Some people may retain the ability to walk without assistance, but others eventually require wheelchairs, canes, or other assistive devices.
Different types of ataxia:
- congenital ataxias (developmental disorders)
- ataxias with metabolic disorders
- ataxias with a DNA repair defect
- degenerative ataxias
- ataxia associated with other features.
Spastic quadriplegia can be diagnosed as early as age one after a noticed delay in development, particularly a delay in rolling, crawling, sitting, or walking. However, depending on the severity, signs may not show up until the age of three. Muscle tone is sometimes used to make the diagnosis for spastic quadriplegia as affected children often appear to be either too stiff or too floppy.
Another important diagnostic factor is the persistence of primitive reflexes past the age at which they should have disappeared (6–12 months of age). These reflexes include the rooting reflex, the sucking reflex, and the Moro reflex, among others.
Magnetic resonance imaging (MRI) or a computed tomography scan (CT scan) may be used to locate the cause of the symptoms. Ultrasound may be used for the same function in premature babies.
Because cerebral palsy refers to a group of disorders, it is important to have a clear and systematic naming system. These disorders must be non-progressive, non-transient, and not due to injury to the spinal cord. Disorders within the group are classified based on two characteristics- the main physiological symptom, and the limbs that are affected. For a disorder to be diagnosed as spastic quadriplegia, an individual must show spastic symptoms (as opposed to athetotic, hypertonic, ataxic, or atonic symptoms) and it must be present in all four limbs (as opposed to hemiplegic, diplegic, or triplegic cases).
While a diagnosis may be able to be made shortly after birth based on family history and observation of the infant, it is often postponed until after the child is between 18–24 months old in order to monitor the possible regression or progression of symptoms.
Physical therapy is the predominant treatment of symptoms. Orthopedic shoes and foot surgery can be used to manage foot problems.
Doublecortin positive cells, similar to stem cells, are extremely adaptable and, when extracted from a brain, cultured and then re-injected in a lesioned area of the same brain, they can help repair and rebuild it. The treatment using them would take some time to be available for general public use, as it has to clear regulations and trials.
The prognosis for Tropical spastic paraparesis indicates some improvement in a percentage of cases due to immunosuppressive treatment. A higher percentage will eventually lose the ability to walk within a ten-year interval.
To gain a better understanding of the disease, researchers have retrospectively reviewed medical records of probands and others who were assessed through clinical examinations or questionnaires. Blood samples are collected from the families of the probands for genetic testing. These family members are assessed using their standard medical history, on their progression of Parkinson's like symptoms (Unified Parkinson's Disease Rating Scale), and on their progression of cognitive impairment such as dementia (Folstein Test).
The prognosis for those with spastic muscles depends on multiple factors, including the severity of the spasticity and the associated movement disorder, access to specialised and intensive management, and ability of the affected individual to maintain the management plan (particularly an exercise program). Most people with a significant UMN lesion will have ongoing impairment, but most of these will be able to make progress. The most important factor to indicate ability to progress is seeing improvement, but improvement in many spastic movement disorders may not be seen until the affected individual receives help from a specialised team or health professional.
Standard MRI scans have been performed on 1.5 Tesla scanners with 5 mm thickness and 5 mm spacing to screen for white matter lesions in identified families. If signal intensities of the MRI scans are higher in white matter regions than in grey matter regions, the patient is considered to be at risk for HDLS, although a number of other disorders can also produce white matter changes and the findings are not diagnostic without genetic testing or pathologic confirmation.
Autosomal Recessive Spastic Ataxia of the Charlevoix-Saguenay (ARSACS) is a very rare neurodegenerative genetic disorder that primarily affects people from the Saguenay–Lac-Saint-Jean and Charlevoix regions of Quebec or descendants of native settlers in this region. This disorder has also been demonstrated in people from various other countries including India, Turkey, Japan, The Netherlands, Italy, Belgium, France and Spain. The prevalence has been estimated at about 1 in 1900 in Quebec, but it is very rare elsewhere.
A prenatal diagnostic is possible and very reliable when mother is carrier of the syndrome. First, it's necessary to determine the fetus' sex and then study X-chromosomes. In both cases, the probability to transfer the X-chromosome affected to the descendants is 50%. Male descendants who inherit the affected chromosome will express the symptoms of the syndrome, but females who do will be carriers.
The inheritance pattern is autosomal recessive. The disorder is caused by a mutation in the SGCG on chromosome 13. The mutation of the SACS gene causes the production of an unstable, poorly functioning SACSIN protein. It is unclear as to how this mutation affects the central nervous system (CNS) and skeletal muscles presenting in the signs and symptoms of ARSACS.
In any manifestation of spastic CP, clonus of the affected limb(s) may intermittently result, as well as muscle spasms, each of which results from the pain and/or stress of the tightness experienced, indicating especially hard-working and/or exhausted musculature. The spasticity itself can and usually does also lead to very early onset of muscle-stress symptoms like arthritis and tendinitis, especially in ambulatory individuals in their mid-20s and early-30s. As compared to other types of CP, however, and especially as compared to hypotonic CP or more general paralytic mobility disabilities, spastic CP is typically more easily manageable by the person affected, and medical treatment can be pursued on a multitude of orthopaedic and neurological fronts throughout life.
Physical therapy and occupational therapy regimens of assisted stretching, strengthening, functional tasks, and/or targeted physical activity and exercise are usually the chief ways to keep spastic CP well-managed, although if the spasticity is too much for the person to handle, other remedies may be considered, such as various antispasmodic medications, botox, baclofen, or even a neurosurgery known as a selective dorsal rhizotomy (which eliminates the spasticity by eliminating the nerves causing it).
There is no cure for PMD, nor is there a standard course of treatment. Treatment, which is symptomatic and supportive, may include medication for seizures and spasticity. Regular evaluations by physical medicine and rehabilitation, orthopedic, developmental and neurologic specialists should be made to ensure optimal therapy and educational resources. The prognosis for those with Pelizaeus–Merzbacher disease is highly variable, with children with the most severe form (so-called connatal) usually not surviving to adolescence, but survival into the sixth or even seventh decades is possible, especially with attentive care. Genetic counseling should be provided to the family of a child with PMD.
In December 2008, StemCells Inc., a biotech company in Palo Alto, received clearance from the U.S. Food and Drug Administration (FDA) to conduct Phase I clinical trials in PMD to assess the safety of transplanting human neural stem cells as a potential treatment for PMD. The trial was initiated in November 2009 at the University of California, San Francisco (UCSF) Children's Hospital.
In the industrialized world, the incidence of overall cerebral palsy, which includes but is not limited to spastic diplegia, is about 2 per 1000 live births. Thus far, there is no known study recording the incidence of CP in the overall nonindustrialized world. Therefore, it is safe to assume that not all spastic CP individuals are known to science and medicine, especially in areas of the world where healthcare systems are less advanced. Many such individuals may simply live out their lives in their local communities without any medical or orthopedic oversight at all, or with extremely minimal such treatment, so that they are never able to be incorporated into any empirical data that orthopedic surgeons or neurosurgeons might seek to collect. It is shocking to note that—as with people with physical disability overall—some may even find themselves in situations of institutionalization, and thus barely see the outside world at all.
From what "is" known, the incidence of spastic diplegia is higher in males than in females; the Surveillance of Cerebral Palsy in Europe (SCPE), for example, reports a M:F ratio of 1.33:1. Variances in reported rates of incidence across different geographical areas in industrialized countries are thought to be caused primarily by discrepancies in the criteria used for inclusion and exclusion.
When such discrepancies are taken into account in comparing two or more registers of patients with cerebral palsy and also the extent to which children with mild cerebral palsy are included, the incidence rates still converge toward the average rate of 2:1000.
In the United States, approximately 10,000 infants and babies are born with CP each year, and 1200–1500 are diagnosed at preschool age when symptoms become more obvious. It is interesting to note that those with extremely mild spastic CP may not even be aware of their condition until much later in life: Internet chat forums have recorded men and women as old as 30 who were diagnosed only recently with their spastic CP.
Overall, advances in care of pregnant mothers and their babies has not resulted in a noticeable decrease in CP; in fact, because medical advances in areas related to the care of premature babies has resulted in a greater survival rate in recent years, it is actually "more" likely for infants with cerebral palsy to be born into the world now than it would have been in the past. Only the introduction of quality medical care to locations with less-than-adequate medical care has shown any decreases in the incidences of CP; the rest either have shown no change or have actually shown an increase. The incidence of CP increases with premature or very low-weight babies regardless of the quality of care.
Delayed diagnosis of cervical spine injury has grave consequences for the victim. About one in 20 cervical fractures are missed and about two-thirds of these patients have further spinal-cord damage as a result. About 30% of cases of delayed diagnosis of cervical spine injury develop permanent neurological deficits. In high-level cervical injuries, total paralysis from the neck can result. High-level tetraplegics (C4 and higher) will likely need constant care and assistance in activities of daily living, such as getting dressed, eating and bowel and bladder care. Low-level tetraplegics (C5 to C7) can often live independently.
Even with "complete" injuries, in some rare cases, through intensive rehabilitation, slight movement can be regained through "rewiring" neural connections, as in the case of the late actor Christopher Reeve.
In the case of cerebral palsy, which is caused by damage to the motor cortex either before, during (10%), or after birth, some people with tetraplegia are gradually able to learn to stand or walk through physical therapy.
Quadriplegics can improve muscle strength by performing resistance training at least three times per week. Combining resistance training with proper nutrition intake can greatly reduce co-morbidities such as obesity and type 2 diabetes.
The muscle spasticity can cause gait patterns to be awkward and jerky. The constant spastic state of the muscle can lead to bone and tendon deformation, further complicating the patient's mobility. Many patients with spastic hemiplegia are subjected to canes, walkers and even wheelchairs. Due to the decrease in weight bearing, patients are at a higher risk of developing osteoporosis. An unhealthy weight can further complicate mobility. Patients with spastic hemiplegia are a high risk for experiencing seizures. Oromotor dysfunction puts patients at risk for aspiration pneumonia. Visual field deficits can cause impaired two-point discrimination. Many patients experience the loss of sensation in the arms and legs on the affected side of the body. Nutrition is essential for the proper growth and development for a child with spastic hemiplegia.
The clinical underpinnings of two of the most common spasticity conditions, spastic diplegia and multiple sclerosis, can be described as follows: in spastic diplegia, the upper motor neuron lesion arises often as a result of neonatal asphyxia, while in conditions like multiple sclerosis, spasticity is thought by some to be as a result of the autoimmune destruction of the myelin sheaths around nerve endings—which in turn can "mimic" the gamma amino butyric acid deficiencies present in the damaged nerves of spastic diplegics, leading to roughly the same "presentation" of spasticity, but which clinically is fundamentally different from the latter.
Spasticity is assessed by feeling the resistance of the muscle to passive lengthening in its most relaxed state. A spastic muscle will have immediately noticeable, often quite forceful, increased resistance to passive stretch when moved with speed and/or while attempting to be stretched out, as compared to the non-spastic muscles in the same person's body (if any exist). As there are many features of the upper motor neuron syndrome, there are likely to be multiple other changes in affected musculature and surrounding bones, such as progressive misalignments of bone structure around the spastic muscles (leading for example to the scissor gait in spastic diplegia). Also, following an upper motor neuron lesion, there may be multiple muscles affected, to varying degrees, depending on the location and severity of the upper motor neuron damage. The result for the affected individual, is that they may have any degree of impairment, ranging from a mild to a severe movement disorder. A relatively mild movement disorder may contribute to a loss of dexterity in an arm, or difficulty with high level mobility such as running or walking on stairs. A severe movement disorder may result in marked loss of function with minimal or no volitional muscle activation. There are several scales used to measure spasticity, such as the King's hypertonicity scale, the Tardieu, and the modified Ashworth. Of these three, only the King's hypertonicity scale measures a range of muscle changes from the UMN lesion, including active muscle performance as well as passive response to stretch.
Assessment of a movement disorder featuring spasticity may involve several health professionals depending on the affected individual's situation, and the severity of their condition. This may include physical therapists, physicians (including neurologists and rehabilitation physicians), orthotists and occupational therapists. Assessment is needed of the affected individual's goals, their function, and any symptoms that may be related to the movement disorder, such as pain. A thorough assessment will include analysis of posture, active movement, muscle strength, movement control and coordination, and endurance, as well as spasticity (response of the muscle to stretch). Spastic muscles typically demonstrate a loss of selective movement, including a loss of eccentric control (decreased ability to actively lengthen). While multiple muscles in a limb are usually affected in the upper motor neuron syndrome, there is usually an imbalance of activity, such that there is a stronger pull in one direction, such as into elbow flexion. Decreasing the degree of this imbalance is a common focus of muscle strengthening programs. Spastic movement disorders also typically feature a loss of stabilisation of an affected limb or the head from the trunk, so a thorough assessment requires this to be analysed as well.
Secondary effects are likely to impact on assessment of spastic muscles. If a muscle has impaired function following an upper motor neuron lesion, other changes such as increased muscle stiffness are likely to affect the feeling of resistance to passive stretch. Other secondary changes such as loss of muscle fibres following acquired muscle weakness are likely to compound the weakness arising from the upper motor neuron lesion. In severely affected spastic muscles, there may be marked secondary changes, such as muscle contracture, particularly if management has been delayed or absent.