Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The diagnosis of Kaufman oculocerebrofacial syndrome can be achieved via molecular testing approaches. Additionally to ascertain if the individual has the condition:
- Growth assessment
- Thyroid function evaluation
- Kidney ultrasound
- Echocardiogram
Kaufman oculocerebrofacial syndrome differential diagnosis consists of:
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
In order to be diagnosed with AGU an individual takes a urine test, which will show indication of an increased amount of aspartylglucosamin being secreted. The confirmation of the diagnosis of aspartylglucosaminuria requires a blood test. This helps show if the enzyme aspartylglucosaminidase is present or partially absent. A skin simple will also show the amount of aspartylglucosaminidase present.
When families have a child who has already been diagnosed with AGU, they have the option to observe the enzyme's activity that codes for AGU in future pregnancy, to help determine if the next child will also have a positive diagnosis for aspartylglucosaminuria.
The diagnosis of Mulibrey nanism can be done via genetic testing, as well as by the physical characteristics (signs/symptoms) displayed by the individual.
Diagnosis is suspected clinically and family history, neuroimaging and genetic study helps to confirm Behr Syndrome.
Diffuse, symmetric white matter abnormalities were demonstrated by magnetic resonance imaging (MRI) suggesting that Behr syndrome may represent a disorder of white matter associated with an unknown biochemical abnormality.
Even though clinical diagnostic criteria have not been 100 percent defined for genitopatellar syndrome, the researchers stated that the certain physical features could relate to KAT6B mutation and result in the molecular genetic testing. The researchers stated that the Individuals with two major features or one major feature and two minor features are likely to have a KAT6B mutation.
To diagnose the Genitopatellar Syndrome, there are multiple ways to evaluate.
Medical genetics consultation
- Evaluation by developmental specialist
- Feeding evaluation
- Baseline hearing evaluation
- Thyroid function tests
- Evaluation of males for cryptorchidism
- Orthopedic evaluation if contractures are present or feet/ankles are malpositioned
- Hip radiographs to evaluate for femoral head dislocation
- Renal ultrasound examination for hydronephrosis and cysts
- Echocardiogram for congenital heart defects
- Evaluation for laryngomalacia if respiratory issues are present
- Evaluation by gastroenterologist as needed, particularly if bowel malrotation is suspected
Though it is only definitively diagnosed by a genetic test, autosomal dominant porencephaly type I can be suspected if the disease is known to run in the family or if someone shows symptoms. CT scanning or MRI may be useful in indicating a diagnosis. COL4A1 may be mutated in other diseases that need to be distinguished, including brain small vessel disease with hemorrhage and HANAC syndrome. CADASIL syndrome is caused by a mutation in a different gene, but may cause similar symptoms. Sporadic porencephaly is another disorder that can appear similar.
Diagnosis of MSS is based on clinical symptoms, magnetic resonance imaging (MRI) of the brain (cerebellar atrophy particularly involving the cerebellar vermis), and muscle biopsy.
It can be associated with mutations of the SIL1 gene, and a mutation can be found in about 50% of cases.
Differential diagnosis includes Congenital Cataracts Facial Dysmorphism Neuropathy (CCFDN), Marinesco–Sjögren like syndrome with chylomicronemia, carbohydrate deficient glycoprotein syndromes, Lowe syndrome, and mitochondrial disease.
Different types of ataxia:
- congenital ataxias (developmental disorders)
- ataxias with metabolic disorders
- ataxias with a DNA repair defect
- degenerative ataxias
- ataxia associated with other features.
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
Clinical diagnosis is conducted on individuals with age onset between late teens and late forties who show the initial characteristics for the recessive autosomal cerebellar ataxia.
The following tests are performed:
- MRI brain screening for cerebellum atrophy.
- Molecular genetic testing for SYNE-1 sequence analysis.
- Electrophysiologic studies for polyneurotherapy
- Neurological examination
Prenatal diagnosis and preimplantation genetic diagnosis (PGD) can be performed to identify the mothers carrying the recessive genes for cerebellar ataxia.
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
In terms of treatment/management for those with Mulibrey nanism should have routine medical follow-ups, additionally the following can be done:
- Growth hormone treatment
- Regular pelvic exams
- Pericardiectomy
Unfortunately, there is not one specific treatment option that can rid a person of this syndrome. However, there are many routes one can take to make living with this disease a lot easier. For example, there are many treatment programs that doctors can specialize for patients and their needs. Meeting with a doctor is very crucial and these specializations can be very useful. Also, one can seek help from pediatricians, EENT doctors, audiologists, and orthopedists. Brace fittings, hearing aids, and physical therapy can also be pushed by one's doctor, so that a patient can live normally. Additionally, anticonvulsant drugs can be used to stop seizures.
In general, children with a small isolated nevus and a normal physical exam do not need further testing; treatment may include potential surgical removal of the nevus. If syndrome issues are suspected, neurological, ocular, and skeletal exams are important. Laboratory investigations may include serum and urine calcium and phosphate, and possibly liver and renal function tests. The choice of imaging studies depends on the suspected abnormalities and might include skeletal survey, CT scan of the head, MRI, and/or EEG.
Depending on the systems involved, an individual with Schimmelpenning syndrome may need to see an interdisciplinary team of specialists: dermatologist, neurologist, ophthalmologist, orthopedic surgeon, oral surgeon, plastic surgeon, psychologist.
Not all of the DOOR symptoms are consistently present. They can vary in severity, and additional features can be noted in individuals affected by DOOR syndrome.
Some of these additional features are:
- Polyhydramnios (increased amniotic fluid during pregnancy) and increased nuchal fold during pregnancy
- Specific facial features such as a large nose
- Severe and sometimes refractory seizures, abnormalities on the magnetic resonance imaging of the brain
- Increased 2-oxoglutaric acid in the blood and urine - this compound is made or used by several enzymes
- Finger-like thumbs
- Visual impairment
- Peripheral neuropathy (nerves conducting sensation from extremities to the brain) and insensivity to pain
Intellectual impairment is present in all reported cases, but the severity can vary widely. The prognosis in terms of survival also varies greatly from early childhood till adulthood.
Treatment for autosomal dominant porencephaly type I is based on the symptoms that an individual is experiencing - for example, treatment of seizures with anticonvulsants. It is particularly important for individuals with this disorder and hypertension to control their blood pressure, as they are at higher risk of stroke. Other stroke prevention treatments include avoiding anticoagulants, smoking, and situations that may lead to head trauma.
Treatment usually involves plastic and reconstructive surgery. Surgery may be needed to correct undescended testes or hernias.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
There are very few ways to test a patient for HGF. Currently, the most common way to diagnose a patient is by means of a physical evaluation. The physician can make a physical evaluation of the patient and send them to a dentist or better yet a specialist like a periodontist to evaluate signs of gingival overgrowth, quality of gingiva, inflammation, mechanical difficulties of the mouth, tooth conditions, and any sort of discomfort.
Aside from obvious physical symptoms seen in a physical evaluation, molecular tests can be run to check if there is a mutation in the SOS1 gene to confirm the diagnosis. If there is indeed a mutation in this gene coupled with the typical physical symptoms, then it is quite probable that a patient suffers from this disease. Also, looking at family history is also becoming more prominent in aiding to diagnose the patient. Otherwise, researchers are working to find new and better ways to test for the presence of HGF.
Young–Simpson syndrome (YSS) is a rare congenital disorder with symptoms including hypothyroidism, heart defects, facial dysmorphism, cryptorchidism in males, hypotonia, mental retardation and postnatal growth retardation.
Other symptoms include transient hypothyroidism, macular degeneration and torticollis. The condition was discovered in 1987 and the name arose from the individuals who first reported the syndrome. An individual with
YSS has been identified with having symptoms to a similar syndrome known as Ohdo Blepharophimosis syndrome, showing that it is quite difficult to diagnose the correct condition based on the symptoms present. Some doctors therefore consider these syndromes to be the same.
The mode of inheritance has had mixed findings based on studies undertaken. One study showed that the parents of an individual with YSS are unrelated and phenotypically normal, indicating a sporadic mutation, thus making it difficult to base the cause of the condition on genetic makeup alone. However, another study was done of an individual with YSS who had first cousins as parents, giving the possibility of autosomal recessive inheritance.
Cohen syndrome is diagnosed by clinical examination, but often difficult due to variation in expression.
Ocular complications, though rare, are listed as optic atrophy, microphthalmia, pigmentary chorioretinitis, hemeralopia (decreased vision in bright light), myopia, strabismus, nystagmus and iris/retinal coloboma.
General appearance is obesity with thin/elongated arms and legs. Micrognathia, short philtrum, and high vaulted palate are common. Variable mental retardation with occasional seizure and deafness also is characteristic of Cohen syndrome.