Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
First degree relatives of those with primary haemochromatosis should be screened to determine if they are a carrier or if they could develop the disease. This can allow preventive measures to be taken.
Screening the general population is not recommended.
There are several methods available for diagnosing and monitoring iron loading including:
- Serum ferritin: In males and postmenopausal females, a serum ferritin value of over 300 ng/mL (670 pmol/L) indicates iron overload. In premenopausal females, a serum ferritin value of over 150 or 200 ng/mL (330 or 440 pmol/L) indicates iron overload.
- Liver biopsy
- HFE
- MRI
Serum ferritin testing is a low-cost, readily available, and minimally invasive method for assessing body iron stores. However, the major problem with using it as an indicator of iron overload is that it can be elevated in a range of other medical conditions unrelated to iron levels including infection, inflammation, fever, liver disease, kidney disease, and cancer. Also, total iron binding capacity may be low, but can also be normal.
The standard of practice in diagnosis of haemochromatosis was recently reviewed by Pietrangelo. Positive HFE analysis confirms the clinical diagnosis of haemochromatosis in asymptomatic individuals with blood tests showing increased iron stores, or for predictive testing of individuals with a family history of haemochromatosis. The alleles evaluated by HFE gene analysis are evident in ~80% of patients with haemochromatosis; a negative report for HFE gene does not rule out haemochromatosis. In a patient with negative HFE gene testing, elevated iron status for no other obvious reason, and family history of liver disease, additional evaluation of liver iron concentration is indicated. In this case, diagnosis of haemochromatosis is based on biochemical analysis and histologic examination of a liver biopsy. Assessment of the hepatic iron index (HII) is considered the "gold standard" for diagnosis of haemochromatosis.
Magnetic resonance imaging (MRI) is emerging as a noninvasive alternative to accurately estimate iron deposition levels in the liver as well as heart, joints, and pituitary gland.
The diagnosis of pyruvate kinase deficiency can be done by full blood counts (differential blood counts) and reticulocyte counts. Other methods include direct enzyme assays, which can determine pyruvate kinase levels in erythrocytes separated by density centrifugation, as well as direct DNA sequencing. For the most part when dealing with pyruvate kinase deficiency, these two diagnostic techniques are complementary to each other as they both contain their own flaws. Direct enzyme assays can diagnose the disorder and molecular testing confirms the diagnosis or vice versa. Furthermore, tests to determine bile salts (bilirubin) can be used to see whether the gall bladder has been compromised.
Due to the wide range of genetic disorders that are presently known, diagnosis of a genetic disorder is widely varied and dependent of the disorder. Most genetic disorders are diagnosed at birth or during early childhood, however some, such as Huntington's disease, can escape detection until the patient is well into adulthood.
The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination. Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.
Juvenile hemochromatosis (or hemochromatosis type 2) is, as its name indicates, a form of hemochromatosis which emerges during youth.
There are two forms:
- "HFE2A" is associated with hemojuvelin
- "HFE2B" is associated with hepcidin antimicrobial peptide
Some sources only specifically include hemojuvelin as a cause of juvenile hemochromatosis.
Not all genetic disorders directly result in death, however there are no known cures for genetic disorders. Many genetic disorders affect stages of development such as Down syndrome. While others result in purely physical symptoms such as muscular dystrophy. Other disorders, such as Huntington's disease show no signs until adulthood. During the active time of a genetic disorder, patients mostly rely on maintaining or slowing the degradation of quality of life and maintain patient autonomy. This includes physical therapy, pain management, and may include a selection of alternative medicine programs.
Effective treatment of the disease has been confined to liver transplants. Success has also been reported with an antioxidant chelation cocktail, though its effectiveness cannot be confirmed. Based on the alloimmune cause hypothesis, a new treatment involving high-dose immunoglobulin to pregnant mothers who have had a previous pregnancy with a confirmed neonatal hemochromatosis outcome, has provided very encouraging results.
Pyruvate kinase deficiency happens worldwide, however northern Europe, and Japan have many cases. The prevalence of pyruvate kinase deficiency is around 51 cases per million in the population (via gene frequency).
In the absence of a liver transplant, FAP is invariably fatal, usually within a decade. The disadvantage of liver transplantation is that approximately 10% of the subjects die from the procedure or complications resulting from the procedure, which is a form of gene therapy wherein the liver expressing wild type and mutant TTR is replaced by a liver only expressing wild type TTR. Moreover, transplanted patients must take immune suppressants (drugs) for the remainder of their life, which can lead to additional complications. In late 2011, the European Medicines Agency approved the transthyretin kinetic stabilizer Tafamidis or Vyndaqel discovered by Jeffery W. Kelly and developed by FoldRx pharmaceuticals (acquired by Pfizer in 2010) for the treatment of FAP based on clinical trial data. Tafamidis (20 mg once daily) slowed the progression of FAP over a 36-month period and importantly reversed the weight loss and muscle wasting associated with disease progression.
At present there is no specific treatment. Many patients with haemolytic anaemia take folic acid (vitamin B) since the greater turnover of cells consumes this vitamin. During crises transfusion may be required. Clotting problems can occur for which anticoagulation may be needed. Unlike hereditary spherocytosis, splenectomy is contraindicated.
In 1993, Peter James Dyck divided HSAN I further into five subtypes HSAN IA-E based on the presence of additional features. These features were thought to result from the genetic diversity of HSAN I (i.e. the expression of different genes, different alleles of a single gene, or modifying genes) or environmental factors. Molecular genetic studies later confirmed the genetic diversity of the disease.
The condition is sometimes confused with juvenile hemochromatosis, which is a hereditary hemochromatosis caused by mutations of a gene called hemojuvelin. While the symptoms and outcomes for these two diseases are similar, the causes appear to be different.
The drug tafamidis has completed a phase II/III 18-month-long placebo controlled clinical trial
and these results in combination with an 18-month follow-on study demonstrated that Tafamidis or Vyndaqel slowed progression of FAP, particularly when administered to patients early in the course of FAP. This drug is now approved by the European Medicines Agency.
The US Food and Drug Administration's Peripheral and Central Nervous System Drugs Advisory Committee rejected the drug in June 2012, in a 13-4 vote. The committee stated that there was not enough evidence supporting efficacy of the drug, and requested additional clinical trials.
The diagnosis of HSAN I is based on the observation of symptoms described above and is supported by a family history suggesting autosomal dominant inheritance. The diagnosis is also supported by additional tests, such as nerve conduction studies in the lower limbs to confirm a sensory and motor neuropathy. In sporadic cases, acquired neuropathies, such as the diabetic foot syndrome and alcoholic neuropathy, can be excluded by the use of magnetic resonance imaging and by interdisciplinary discussion between neurologists, dermatologists, and orthopedics.
The diagnosis of the disease has been revolutionized by the identification of the causative genes. The diagnosis is now based on the detection of the mutations by direct sequencing of the genes. Nevertheless, the accurate phenotyping of patients remains crucial in the diagnosis. For pregnant patients, termination of pregnancy is not recommended.
HSAN I must be distinguished from hereditary motor and sensory neuropathy (HMSN) and other types of hereditary sensory and autonomic neuropathies (HSAN II-V). The prominent sensory abnormalities and foot ulcerations are the only signs to separate HSAN I from HMSN. HSAN II can be differentiated from HSAN I as it is inherited as an autosomal recessive trait, it has earlier disease onset, the sensory loss is diffused to the whole body, and it has less or no motor symptoms. HSAN III-V can be easily distinguished from HSAN I because of congenital disease onset. Moreover, these types exhibit typical features, such as the predominant autonomic disturbances in HSAN III or congenital loss of pain and anhidrosis in HSAN IV.
Haematologists have identified a number of variants. These can be classified as below.
- Overhydrated hereditary stomatocytosis
- Dehydrated HSt (hereditary xerocytosis; hereditary hyperphosphatidylcholine haemolytic anaemia)
- Dehydrated with perinatal ascites
- Cryohydrocytosis
- 'Blackburn' variant.
- Familial pseudohyperkalaemia
There are other families that do not fall neatly into any of these classifications.
Stomatocytosis is also found as a hereditary disease in Alaskan malamute and miniature schnauzer dogs.
The most useful information for accurate diagnosis is the symptoms and weakness pattern. If the quadriceps are spared but the hamstrings and iliopsoas are severely affected in a person between ages of 20 - 40, it is very likely HIBM will be at the top of the differential diagnosis. The doctor may order any or all of the following tests to ascertain if a person has IBM2:
- Blood test for serum Creatine Kinase (CK or CPK);
- Nerve Conduction Study (NCS) / Electomyography (EMG);
- Muscle Biopsy;
- Magnetic Resonance Imaging (MRI) or Computer Tomography (CT) Scan to determine true sparing of quadriceps;
- Blood Test or Buccal swab for genetic testing;
In many cases, MHA requires no treatment. However, in extreme cases, blood platelet transfusions may be necessary
There are very few ways to test a patient for HGF. Currently, the most common way to diagnose a patient is by means of a physical evaluation. The physician can make a physical evaluation of the patient and send them to a dentist or better yet a specialist like a periodontist to evaluate signs of gingival overgrowth, quality of gingiva, inflammation, mechanical difficulties of the mouth, tooth conditions, and any sort of discomfort.
Aside from obvious physical symptoms seen in a physical evaluation, molecular tests can be run to check if there is a mutation in the SOS1 gene to confirm the diagnosis. If there is indeed a mutation in this gene coupled with the typical physical symptoms, then it is quite probable that a patient suffers from this disease. Also, looking at family history is also becoming more prominent in aiding to diagnose the patient. Otherwise, researchers are working to find new and better ways to test for the presence of HGF.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
In a peripheral blood smear, the red blood cells will "appear" abnormally small and lack the central pale area that is present in normal red blood cells. These changes are also seen in non-hereditary spherocytosis, but they are typically more pronounced in hereditary spherocytosis. The number of immature red blood cells (reticulocyte count) will be elevated. An increase in the mean corpuscular hemoglobin concentration is also consistent with hereditary spherocytosis.
Other protein deficiencies cause hereditary elliptocytosis, pyropoikilocytosis or stomatocytosis.
In longstanding cases and in patients who have taken iron supplementation or received numerous blood transfusions, iron overload may be a significant problem. This is a potential cause of heart muscle damage and liver disease. Measuring iron stores is therefore considered part of the diagnostic approach to hereditary spherocytosis.
An osmotic fragility test can aid in the diagnosis. In this test, the spherocytes will rupture in liquid solutions less concentrated than the inside of the red blood cell. This is due to increased permeability of the spherocyte membrane to salt and water, which enters the concentrated inner environment of the RBC and leads to its rupture. Although the osmotic fragility test is widely considered the gold standard for diagnosing hereditary spherocytosis, it misses as many as 25% of cases. Flow cytometric analysis of eosin-5′-maleimide-labeled intact red blood cells and the acidified glycerol lysis test are two additional options to aid diagnosis.
The diagnosis of hereditary elliptocytosis is usually made by coupling a family history of the condition with an appropriate clinical presentation and confirmation on a blood smear. In general it requires that at least 25% of erythrocytes in the specimen are abnormally elliptical in shape, though the observed percentage of elliptocytes can be 100%. This is in contrast to the rest of the population, in which it is common for up to 15% of erythrocytes to be elliptical.
If some doubt remains regarding the diagnosis, definitive diagnosis can involve osmotic fragility testing, an autohaemolysis test, and direct protein assaying by gel electrophoresis.
The diagnosis of Albright's hereditary osteodystrophy is based on the following exams below:
- CBC
- Urine test
- MRI
Those with hereditary elliptocytosis have a good prognosis, only those with very severe disease have a shortened life expectancy.
A number of liver function tests (LFTs) are available to test the proper function of the liver. These test for the presence of enzymes in blood that are normally most abundant in liver tissue, metabolites or products. serum proteins, serum albumin, serum globulin,
alanine transaminase, aspartate transaminase, prothrombin time, partial thromboplastin time.
Imaging tests such as transient elastography, ultrasound and magnetic resonance imaging can be used to examine the liver tissue and the bile ducts. Liver biopsy can be performed to examine liver tissue to distinguish between various conditions; tests such as elastography may reduce the need for biopsy in some situations.
Experimental gene therapy exists to treat hereditary spherocytosis in lab mice; however, this treatment has not yet been tried on humans due to all of the risks involved in human gene therapy.