Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis is based on clinical findings.
'Clinical findings'
- Profound congenital sensorineural deafness is present
- CT scan or MRI of the inner ear shows no recognizable structure in the inner ear.
- As michel's aplasia is associated with LAMM syndrome there will be Microtia and microdontia present(small sized teeth).
Molecular genetic Testing
1. "FGF3" is the only gene, whose mutation can cause congenital deafness with Michel's aplasia, microdontia and microtia
Carrier testing for at-risk relatives requires identification of mutations which are responsible for occurrence of disease in the family.
Weissenbacher-Zweymüller syndrome is diagnosed upon a thorough clinical evaluation, detailed patient history, identification of characteristic symptom and a variety of specialized tests which includes x-rays.
A thorough diagnosis should be performed on every affected individual, and siblings should be studied for deafness, parathyroid and renal disease. The syndrome should be considered in infants who have been diagnosed prenatally with a chromosome 10p defect, and those who have been diagnosed with well defined phenotypes of urinary tract abnormalities. Management consists of treating the clinical abnormalities at the time of presentation. Prognosis depends on the severity of the kidney disease.
Presence of inner ear abnormalities lead to Delayed gross development of child because of balance impairment and profound deafness which increases the risk of trauma and accidents.
- Incidence of accidents can be decreased by using visual or vibrotactile alarm systems in homes as well as in schools.
- Anticipatory education of parents, health providers and educational programs about hazards can help.
The frequency is unknown, but the disease is considered to be very rare.
Diagnosis requires a neurological examination and neuroimaging can be helpful.
BVVL can be differentially diagnosed from similar conditions like Fazio-Londe syndrome and amyotrophic lateral sclerosis, in that those two conditions don't involve sensorineural hearing loss, while BVVL, Madras motor neuron disease, Nathalie syndrome, and Boltshauser syndrome do. Nathalie syndrome does not involve lower cranial nerve symptoms, so it can be excluded if those are present. If there is evidence of lower motor neuron involvement, Boltshauser syndrome can be excluded. Finally, if there is a family history of the condition, then BVVL is more likely than MMND, as MMND tends to be sporadic.
Genetic testing is able to identify genetic mutations underying BVVL.
Screening generally only takes place among those displaying several of the symptoms of ABCD, but a study on a large group of institutionalized deaf people in Columbia revealed that 5.38% of them were Waardenburg patients. Because of its rarity, none of the patients were diagnosed with ABCD (Waardenburg Type IV). Nothing can be done to prevent the disease.
Audiometry (measuring ability to hear sounds of a particular pitch) is usually abnormal, but the findings are not particularly specific and an audiogram is not sufficient to diagnose Pendred syndrome. A thyroid goitre may be present in the first decade and is usual towards the end of the second decade. MRI scanning of the inner ear usually shows widened or large vestibular aqueducts with enlarged endolymphatic sacs and may show abnormalities of the cochleae that is known as Mondini dysplasia. Genetic testing to identify the pendrin gene usually establishes the diagnosis. If the condition is suspected, a "perchlorate discharge test" is sometimes performed. This test is highly sensitive, but may also be abnormal in other thyroid conditions. If a goitre is present, thyroid function tests are performed to identify mild cases of thyroid dysfunction even if they are not yet causing symptoms.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Research for designing therapeutic trials is ongoing via the Washington University Wolfram Study Group, supported by The Ellie White Foundation for Rare Genetic Disorders and The Jack and J.T. Snow Scientific Research Foundation for Wolfram research.
The occurrence of WS has been reported to be one in 45,000 in Europe. The diagnosis can be made prenatally by ultrasound due to the phenotype displaying pigmentary disturbances, facial abnormalities, and other developmental defects. After birth, the diagnosis is initially made symptomatically and can be confirmed through genetic testing. If the diagnosis is not made early enough, complications can arise from
Hirschsprung's disease.
There is no cure as of now. Treatment is directed towards the specific symptoms that are present in each individual. Individuals with hearing loss are able to get treated with hearing aids.
The first symptom is typically diabetes mellitus, which is usually diagnosed around the age of 6. The next symptom to appear is often optic atrophy, the wasting of optic nerves, around the age of 11. The first signs of this are loss of colour vision and peripheral vision. The condition worsens over time, and people with optic atrophy are usually blind within 8 years of the first symptoms. Life expectancy of people suffering from this syndrome is about 30 years.
Unfortunately, there is not one specific treatment option that can rid a person of this syndrome. However, there are many routes one can take to make living with this disease a lot easier. For example, there are many treatment programs that doctors can specialize for patients and their needs. Meeting with a doctor is very crucial and these specializations can be very useful. Also, one can seek help from pediatricians, EENT doctors, audiologists, and orthopedists. Brace fittings, hearing aids, and physical therapy can also be pushed by one's doctor, so that a patient can live normally. Additionally, anticonvulsant drugs can be used to stop seizures.
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
The presence of the disease can be confirmed with a genetic test. In a study of 10 infants with clinical indications of NSML prior to their first birthday, 8 (80%) patients were confirmed to have the suspected mutation. An additional patient with the suspected mutation was subsequently found to have NF1, following evaluation of the mother.
There are 5 identified allelic variants responsible for NSML. Y279C, T468M, A461T, G464A, and Q510P which seems to be a unique familial mutation, in that all other variants are caused by transition errors, rather than transversion.
Though it is only definitively diagnosed by a genetic test, autosomal dominant porencephaly type I can be suspected if the disease is known to run in the family or if someone shows symptoms. CT scanning or MRI may be useful in indicating a diagnosis. COL4A1 may be mutated in other diseases that need to be distinguished, including brain small vessel disease with hemorrhage and HANAC syndrome. CADASIL syndrome is caused by a mutation in a different gene, but may cause similar symptoms. Sporadic porencephaly is another disorder that can appear similar.
Still's disease does not affect children under 6 months old.
Hyperimmunoglobulin D syndrome in 50% of cases is associated with mevalonate kinase deficiency which can be measured in the leukocytes.
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.
The diagnosis is based on observing the patient and finding the constellation of symptoms and signs described above. A few blood tests help, by showing signs of long standing inflammation. There is no specific test for the disease, though now that the gene that causes the disease is known, that may change.
Routine laboratory investigations are non specific: anaemia, increased numbers of polymorphs, an elevated erythrocyte sedimentation rate and elevated concentrations of C-reactive protein are typically all the abnormalities found. Lumbar puncture shows elevated levels of polymorphs (20-70% of cases) and occasionally raised eosinophil counts (0-30% of cases). CSF neopterin may be elevated.
The X ray changes are unique and charactistic of this syndrome. These changes include bony overgrowth due to premature ossification of the patella and the long bone epiphyses in very young children and bowing of long bones with widening and shortening periosteal reaction in older ones.
Audiometry shows a progressive sensineural deafness. Visual examination shows optic atrophy and an increase in the blind spot. CT is usually normal but may show enlargement of the ventricles. MRI with contrast may show enhancement of leptomeninges and cochlea consistent with chronic meningitis. EEG shows is non specific with slow waves and spike discharges.
Polymorphs tend to show increased expression of CD10.
Not all of the DOOR symptoms are consistently present. They can vary in severity, and additional features can be noted in individuals affected by DOOR syndrome.
Some of these additional features are:
- Polyhydramnios (increased amniotic fluid during pregnancy) and increased nuchal fold during pregnancy
- Specific facial features such as a large nose
- Severe and sometimes refractory seizures, abnormalities on the magnetic resonance imaging of the brain
- Increased 2-oxoglutaric acid in the blood and urine - this compound is made or used by several enzymes
- Finger-like thumbs
- Visual impairment
- Peripheral neuropathy (nerves conducting sensation from extremities to the brain) and insensivity to pain
Intellectual impairment is present in all reported cases, but the severity can vary widely. The prognosis in terms of survival also varies greatly from early childhood till adulthood.
Treatment is supportive and consists of management of manifestations. User of hearing aids and/or cochlear implant, suitable educational programs can be offered. Periodic surveillance is also important.
It is suggested that, once diagnosed, individuals be routinely followed by a cardiologist, endocrinologist, dermatologist, and other appropriate specialties as symptoms present.
It is recommended that those with the syndrome who are capable of having children seek genetic counseling before deciding to have children. As the syndrome presents frequently as a "forme fruste" (incomplete, or unusual form) variant, an examination of all family members must be undertaken. As an autosomal dominant trait there is a fifty percent chance with each child that they will also be born with the syndrome. Although fully penetrant, since the syndrome has variable expressivity, one generation may have a mild expression of the syndrome, while the next may be profoundly affected.
Once a decision to have children is made, and the couple conceives, the fetus is monitored during the pregnancy for cardiac evaluation. If a gross cardiac malformation is found, parents receive counseling on continuing with the pregnancy.
Other management is routine care as symptoms present:
1. For those with endocrine issues (low levels of thyrotopin [a pituitary hormone responsible for regulating thyroid hormones], follicle stimulating hormone) drug therapy is recommended.
2. For those who are disturbed by the appearance of lentigines, cryosurgery may be beneficial. Due to the large number of lentigines this may prove time consuming. An alternative treatment with tretinoin or hydroquinone creams may help.
3. Drug therapies for those with cardiac abnormalities, as those abnormalities become severe enough to warrant the use of these therapies. ECG's are mandatory prior to any surgical interventions, due to possible arrythmia.
No specific treatment exists for Pendred syndrome. Speech and language support and hearing aids are important. Cochlear implants may be needed if the hearing loss drops to severe to profound levels and can improve language skills. If thyroid hormone levels are decreased, thyroid hormone supplements may be required. Patients are advised to take precautions against head injury.
The actual incidence of this disease is not known, but only 243 cases have been reported in the scientific literature, suggesting an incidence of on the order of one affected person in ten million people.