Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
1. Clinical Genetics and Genetic Testing
Genetic testing is necessary to confirm the diagnosis of PMS. A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small to detect with this method. Chromosomal microarray should be ordered in children with suspected developmental delays or ASD. Most cases will be identified by microarray; however, small variations in genes might be missed. The falling cost for whole exome sequencing may replace DNA microarray technology for candidate gene evaluation. Biological parents should be tested with fluorescence "in situ" hybridization (FISH) to rule out balanced translocations or inversions. Balanced translocation in a parent increases the risk for recurrence and heritability within families (figure 3).
Clinical genetic evaluations and dysmorphology exams should be done to evaluate growth, pubertal development, dysmorphic features (table 1) and screen for organ defects (table 2)
2. Cognitive and Behavioral Assessment
All patients should undergo comprehensive developmental, cognitive and behavioral assessments by clinicians with experience in developmental disorders. Cognitive evaluation should be tailored for individuals with significant language and developmental delays. All patients should be referred for specialized speech/language, occupational and physical therapy evaluations.
3. Neurological Management
Individuals with PMS should be followed by a pediatric neurologist regularly to monitor motor development, coordination and gait, as well as conditions that might be associated with hypotonia. Head circumference should be performed routinely up until 36 months. Given the high rate of seizure disorders (up to 41% of patients) reported in the literature in patients with PMS and its overall negative impact on development, an overnight video EEG should be considered early to rule out seizure activity. In addition, a baseline structural brain MRI should be considered to rule out the presence of structural abnormalities.
4. Nephrology
All patients should have a baseline renal and bladder ultrasonography and a voiding cystourethrogram should be considered to rule out structural and functional abnormalities. Renal abnormalities are reported in up to 38% of patients with PMS. Vesicouretral reflux, hydronephrosis, renal agenesis, dysplasic kidney, polycystic kidney and recurrent urinary tract infections have all been reported in patients with PMS.
5. Cardiology
Congenital heart defects (CHD) are reported in samples of children with PMS with varying frequency (up to 25%)(29,36). The most common CHD include tricuspid valve regurgitation, atrial septal defects and patent ductus arteriousus. Cardiac evaluation, including echocardiography and electrocardiogram, should be considered.
6. Gastroenterology
Gastrointestinal symptoms are common in individuals with PMS. Gastroesophageal reflux, constipation, diarrhea and cyclic vomiting are frequently described.
Table 3: Clinical Assessment Recommendations in Phelan McDermid Syndrome.
Diagnosis is based on clinical findings and can be confirmed by cytogenetic testing, when the deletion is in an average of 5 Mb (millions of base pairs). Nowadays is a common practice to run an aCHG (array chromosome hybridization genome) study on peripheral blood of the patient, in order to limit the extent of the loss of the genomic area, and the deleted genes.
Most individuals with this condition do not survive beyond childhood. Individuals with MDS usually die in infancy and therefore do not live to the age where they can reproduce and transmit MDS to their offspring.
Medical diagnosis is required. Clinical tests can be performed, as well as molecular genetic testing. The available tests include:
Sequence analysis of the entire coding region
- Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) - Sanger Sequencing: Diagnosis, Mutation Confirmation, Pre-symptomatic, Risk Assessment, Screening
- Craniosynostosis: Diagnosis
- Invitae FGFR3-Related Disorders Test: Pre-symptomatic, Diagnosis, Therapeutic management
Mutation scanning of select exons
- Skeletal Dysplasia Panel: Diagnosis, Prognostic
Sequence analysis of select exons
- Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN, FGFR3): Diagnosis, Mutation Confirmation, Risk Assessment
- Severe Achondroplasia, Developmental Delay, Acanthosis Nigricans: Diagnosis, Mutation Confirmation
Deletion/duplication analysis
- Invitae FGFR3-Related Disorders Test: Pre-symptomatic, Diagnosis, Therapeutic management
Life with SADDAN is manageable, although therapy, surgery, and lifelong doctor surveillance may be required.
While no cure for MDS is available yet, many complications associated with this condition can be treated, and a great deal can be done to support or compensate for functional disabilities. Because of the diversity of the symptoms, it can be necessary to see a number of different specialists and undergo various examinations, including:
- Developmental evaluation
- Cardiologists evaluation
- Otolaryngology
- Treatment of seizures
- Urologic evaluation
- Genetic counseling-balanced chromosomal translocation should be excluded in a parents with an affected child are planning another pregnancy, so parents with affected children should visit a genetic counselor.
The ring 20 abnormality may be limited to as few as 5% of cells, so a screen for chromosomal mosaicism is critical. Newer array technology will not detect the ring chromosome and the standard metaphase chromosome analysis has been recommended. A karyotype analysis examining at least 50 cells should be requested to properly detect mosaicism.
13q deletion syndrome can only be definitively diagnosed by genetic analysis, which can be done prenatally or after birth. Increased nuchal translucency in a first-trimester ultrasound may indicate the presence of 13q deletion.
Diagnosis of 22q11.2 deletion syndrome can be difficult due to the number of potential symptoms and the variation in phenotypes between individuals. It is suspected in patients with one or more signs of the deletion. In these cases a diagnosis of 22q11.2DS is confirmed by observation of a deletion of part of the long arm (q) of chromosome 22, region 1, band 1, sub-band 2. Genetic analysis is normally performed using fluorescence "in situ" hybridization (FISH), which is able to detect microdeletions that standard karyotyping (e.g. G-banding) miss. Newer methods of analysis include Multiplex ligation-dependent probe amplification assay (MLPA) and quantitative polymerase chain reaction (qPCR), both of which can detect atypical deletions in 22q11.2 that are not detected by FISH. qPCR analysis is also quicker than FISH, which can have a turn around of 3 to 14 days.
A 2008 study of a new high-definition MLPA probe developed to detect copy number variation at 37 points on chromosome 22q found it to be as reliable as FISH in detecting normal 22q11.2 deletions. It was also able to detect smaller atypical deletions that are easily missed using FISH. These factors, along with the lower expense and easier testing mean that this MLPA probe could replace FISH in clinical testing.
Genetic testing using BACs-on-Beads has been successful in detecting deletions consistent with 22q11.2DS during prenatal testing. Array-comparative genomic hybridization (array-CGH) uses a large number of probes embossed in a chip to screen the entire genome for deletions or duplications. It can be used in post and pre-natal diagnosis of 22q11.2.
Fewer than 5% of individuals with clinical symptoms of the 22q11.2 deletion syndrome have normal routine cytogenetic studies and negative FISH testing. In these cases, atypical deletions are the cause. Some cases of 22q11.2 deletion syndrome have defects in other chromosomes, notably a deletion in chromosome region 10p14.
Most affected people have a stable clinical course but are often transfusion dependent.
While no genetic syndrome is capable of being cured, treatments are available for some symptoms. External fixators have been used for limbic and facial reconstructions.
Diagnosis is based on the distinctive cry and accompanying physical problems. These common symptoms are quite easily observed in infants. Affected children are typically diagnosed by a doctor or nurse at birth. Genetic counseling and genetic testing may be offered to families with individuals who have cri du chat syndrome. Prenatally the deletion of the cri du chat related region in the p arm of chromosome 5 can be detected from amniotic fluid or chorionic villi samples with BACs-on-Beads technology. G-banded karyotype of a carrier is also useful. Children may be treated by speech, physical and occupational therapists. Heart abnormalities often require surgical correction.
Electroencephalography (EEG) in one patient showed epileptiformic activities in the frontal and frontotemporal areas as well as increased spike waves while the patient was sleeping. Another patient's EEG showed occipital rhythms in background activity that was abnormal, focal discharges over the temporal lobe, and multifocial epileptiform activity. Several patients showed a loss of normal background activity.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Potocki–Shaffer syndrome can be detected through array comparative genomic hybridization (aCGH).
Some symptoms can be managed with drug therapy, surgery and rehabilitation, genetic counselling, and palliative care.
Since the symptoms caused by this disease are present at birth, there is no “cure.” The best cure that scientists are researching is awareness and genetic testing to determine risk factors and increase knowledgeable family planning. Prevention is the only option at this point in time for a cure.
Laboratory testing reveals multiple mutations of HCS. Two genetic variants result in sporadic HCS symptoms, which are HCS-02 and HCS-03. These mutations produce symptoms that come and go, but have been present "de novo". HCS-03 was identified as the variant that is passed through afflicted family members and presents symptoms throughout the lifetime of the individual. All variants of HCS lead to the same premature termination of PEST sequences which compromise normal function of "NOTCH2". "NOTCH" has four different receptors, which have an affinity for similar ligands. They are classified as single-pass transmembrane receptors.
Magnetic Resonance Imaging (MRI) in one family showed mild atrophy of the cranial vermis as well as a small pons. Different types of atrophy including cerebellar in four individuals and basal ganglia has been evident through MRIs.
Diagnosing Jacobsen Syndrome can be difficult in some cases because it is a rare chromosomal disorder. There are a variety of tests that can be carried out like karyotype, cardiac echocardiogram, a renal sonogram, a platelet count, blood count, a brain imaging study. Genetic testing can be carried out for diagnosis. In which chromosomes are stained to give a barcode like appearance and studied under the microscope which reveals the broken and deleted genes. It can also be diagnosed early in the prenatal stage if there are any abnormalities seen in the ultrasound. A simple assessment of the symptoms can be done to diagnose the Syndrome. A thorough physical examination could be carried out to assess the symptoms.
Blood lactate and pyruvate levels usually are elevated as a result of increased anaerobic metabolism and a decreased ratio of ATP:ADP. CSF analysis shows an elevated protein level, usually >100 mg/dl, as well as an elevated lactate level.
SMS is usually confirmed by blood tests called chromosome (cytogenetic) analysis and utilize a technique called FISH (fluorescent in situ hybridization). The characteristic micro-deletion was sometimes overlooked in a standard FISH test, leading to a number of people with the symptoms of SMS with negative results.
The recent development of the FISH for 17p11.2 deletion test has allowed more accurate detection of this deletion. However, further testing is required for variations of Smith–Magenis syndrome that are caused by a mutation of the "RAI1" gene as opposed to a deletion.
Children with SMS are often given psychiatric diagnoses such as autism, attention deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), attention deficit disorder (ADD) and/or mood disorders.
A neuro-ophthalmologist is usually involved in the diagnosis and management of KSS. An individual should be suspected of having KSS based upon clinical exam findings. Suspicion for myopathies should be increased in patients whose ophthalmoplegia does not match a particular set of cranial nerve palsies (oculomotor nerve palsy, fourth nerve palsy, sixth nerve palsy). Initially, imaging studies are often performed to rule out more common pathologies. Diagnosis may be confirmed with muscle biopsy, and may be supplemented with PCR determination of mtDNA mutations.
Treatment of cause: Due to the genetic cause, no treatment of the cause is possible.
Treatment of manifestations: routine treatment of ophthalmologic, cardiac, and neurologic findings; speech, occupational, and physical therapies as appropriate; specialized learning programs to meet individual needs; antiepileptic drugs or antipsychotic medications as needed.
Surveillance: routine pediatric care; routine developmental assessments; monitoring of specific identified medical issues.
Lenalidomide has activity in 5q- syndrome and is FDA approved for red blood cell (RBC) transfusion-dependent anemia due to low or intermediate-1 (int-1) risk myelodysplastic syndrome (MDS) associated with chromosome 5q deletion with or without additional cytogenetic abnormalities. There are several possible mechanisms that link the haploinsufficiency molecular lesions with lenalidomide sensitivity.
XLI can be suspected based on clinical findings, although symptoms can take varying amounts of time to become evident, from a few hours after birth, up to a year in milder cases. The diagnosis is usually made by a dermatologist, who also typically formulates the treatment plan (see below). STS enzyme deficiency is confirmed using a clinically available biochemical assay. Carrier detection can be performed in mothers of affected sons using this test (see Genetics, below). Molecular testing for DNA deletions or mutations is also offered, and can be particularly useful in the evaluation of individuals with associated medical conditions (see below). Prenatal diagnosis is possible using either biochemical or molecular tests. However, the use of prenatal diagnosis for genetic conditions that are considered to be generally benign raises serious ethical considerations and requires detailed genetic counseling.
According to Clinicaltrials.gov, there are no current studies on hyperglycerolemia.
Clinicaltrials.gov is a service of the U.S. National Institutes of Health. Recent research shows patients with high concentrations of blood triglycerides have an increased risk of coronary heart disease. Normally, a blood glycerol test is not ordered. The research was about a child having elevated levels of triglycerides when in fact the child had glycerol kinase deficiency. This condition is known as pseudo-hypertriglyceridemia, a falsely elevated condition of triglycerides. Another group treated patients with elevated concentrations of blood triglycerides with little or no effect on reducing the triglycerides. A few laboratories can test for high concentrations of glycerol, and some laboratories can compare a glycerol-blanked triglycerides assay with the routine non-blanked method. Both cases show how the human body may exhibit features suggestive of a medical disorder when in fact it is another medical condition causing the issue.