Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Diagnosis of autoimmune disorders largely rests on accurate history and physical examination of the patient, and high index of suspicion against a backdrop of certain abnormalities in routine laboratory tests (example, elevated C-reactive protein). In several systemic disorders, serological assays which can detect specific autoantibodies can be employed. Localised disorders are best diagnosed by immunofluorescence of biopsy specimens. Autoantibodies are used to diagnose many autoimmune diseases. The levels of autoantibodies are measured to determine the progress of the disease.
Patient should seek a physician for skin tests. Typically, after a consultation with rheumatologist, the disease will be diagnosed. A dermatologist is also another specialist that can diagnose.
Blood studies and numerous other specialized tests depending upon which organs are affected.
Diagnosing SS is complicated by the range of symptoms a patient may manifest, and the similarity between symptoms of SS and those of other conditions. Also, patients who have symptoms of SS approach different specialities regarding their symptoms which make the diagnosis difficult. Since the symptoms of this autoimmune disorder such as dry eyes and dry mouth are very common among people, and mostly observed from the age of 40 and above, it is often mistaken as age-related, thus ignored. However, some medications can also cause symptoms that are similar to those of SS. The combination of several tests, which can be done in a series, can eventually lead to the diagnosis of SS.
SS is usually classified as either 'primary' or 'secondary'. Primary Sjögren syndrome occurs by itself and secondary Sjögren syndrome occurs when another connective tissue disease is present.
Blood tests can be done to determine if a patient has high levels of antibodies that are indicative of the condition, such as antinuclear antibody (ANA) and rheumatoid factor (because SS frequently occurs secondary to rheumatoid arthritis), which are associated with autoimmune diseases. Typical SS ANA patterns are SSA/Ro and SSB/La, of which Anti-SSB/La is far more specific; Anti-SSA/Ro is associated with numerous other autoimmune conditions, but are often present in SS. However, Anti-SSA and Anti-SSB tests are frequently not positive in SS.
The rose bengal test uses a stain that measures state and function of the lacrimal glands. This test involves placing the non-toxic dye rose bengal on the eyes. The dye’s distinctive colour helps in determining the state and functioning of tear film and the rate of tear evaporation. Any distinctive colour change observed will be indicative of SS, but many related diagnostic tools will be used to confirm the condition of SS.
Schirmer's test measures the production of tears: a strip of filter paper is held inside the lower eyelid for five minutes, and its wetness is then measured with a ruler. Producing less than of liquid is usually indicative of SS. This measurement analysis varies among people depending on other eye-related conditions and medications in use when the test is taken. A slit-lamp examination can reveal dryness on the surface of the eye.
Symptoms of dry mouth and dryness in the oral cavity are caused by the reduced production of saliva from the salivary glands (parotid gland, submandibular gland, and sublingual gland). To check the status of salivary glands and the production of saliva, a salivary flow-rate test is performed, in which the person is asked to spit as much as they can into a cup, and the resulting saliva sample is collected and weighed. This test's results can determine whether the salivary glands are functioning adequately. Not enough saliva produced could mean the person has SS. An alternative test is non-stimulated whole saliva flow collection, in which the person spits into a test tube every minute for 15 minutes. A resultant collection of less than is considered a positive result.
A lip/salivary gland biopsy takes a tissue sample that can reveal lymphocytes clustered around salivary glands, and damage to these glands due to inflammation. This test involves removing a sample of tissue from a person’s inner lip/salivary gland and examining it under a microscope. In addition, a sialogram, a special X-ray test, is performed to see if any blockage is present in the salivary gland ducts (i.e. parotid duct) and the amount of saliva that flows into the mouth.
Also, a radiological procedure is available as a reliable and accurate test for SS. A contrast agent is injected into the parotid duct, which opens from the cheek into the vestibule of the mouth opposite the neck of the upper second molar tooth. Histopathology studies should show focal lymphocytic sialadenitis. Objective evidence of salivary gland involvement is tested through ultrasound examinations, the level of unstimulated whole salivary flow, a parotid sialography or salivary scintigraphy, and autoantibodies against Ro (SSA) and/or La (SSB) antigens.
SS can be excluded from people with past head and neck radiation therapy, acquired immunodeficiency syndrome (AIDS), pre-existing lymphoma, sarcoidosis, graft-versus-host disease, and use of anticholinergic drugs.
There is no official diagnostic criteria for UCTD. Diagnostic testing generally aims to determine whether a patient has a "definite" or "undifferentiated" connective tissue disease.
There is no prevention mechanism for SS due to its complexity as an autoimmune disorder. However, lifestyle changes can reduce the risk factors of getting SS or reduce the severity of the condition with patients who have already been diagnosed. Diet is strongly associated with inflammation that is mostly seen in many autoimmune related diseases including SS. An experimental study concludes that SS patients show high sensitivity to gluten that directly relates to inflammation. Moderate exercise is also found to be helpful in SS patients mainly reducing the effect of lung inflammation.
Most patients will maintain a diagnosis of undifferentiated connective tissue disease. However, about one third of UCTD patients will differentiate to a specific autoimmune disease, like rheumatoid arthritis or systemic sclerosis. About 12 percent of patients will go into remission.
Severe vitamin D deficiency has been associated with the progression of UCTD into defined connective tissue diseases. The presence of the autoantibodies anti-dsDNA, anti-Sm, and anti-cardiolipin has been shown to correlate with the development of systemic lupus erythematosus, specifically.
AQP4-Ab-negative NMO presents problems for diagnosis. The behavior of the oligoclonal bands respect MS can help to establish a more accurate diagnosis. Oligoclonal bands in NMO are rare and they tend to disappear after the attacks, while in MS they are nearly always present and persistent.
It is important to notice for differential diagnosis that, though uncommon, it is possible to have longitudinal lesions in MS
Other problem for diagnosis is that AQP4ab in MOGab levels can be too low to be detected. Some additional biomarkers have been proposed.
The differential diagnosis of Kikuchi disease includes systemic lupus erythematosus (SLE), disseminated tuberculosis, lymphoma, sarcoidosis, and viral lymphadenitis. Clinical findings sometimes may include positive results for IgM/IgG/IgA antibodies.
For other causes of lymph node enlargement, see lymphadenopathy.
The Mayo Clinic proposed a revised set of criteria for diagnosis of Devic's disease in 2006. Those new guidelines require two absolute criteria plus at least two of three supportive criteria. In 2015 a new review was published by an international panel refining the previous clinical case definition but leaving the main criteria unmodified:
Absolute criteria:
1. Optic neuritis
2. Acute myelitis
Supportive criteria:
1. Brain MRI not meeting criteria for MS at disease onset
2. Spinal cord MRI with continuous T2-weighted signal abnormality extending over three or more vertebral segments, indicating a relatively large lesion in the spinal cord
3. NMO-IgG seropositive status (The NMO-IgG test checks the existence of antibodies against the aquaporin 4 antigen.)
All patients with symptomatic cryoglobulinemia are advised to avoid, or protect their extremities, from exposure to cold temperatures. Refrigerators, freezers, and air-conditioning represent dangers of such exposure.
Individuals found to have circulating cryoglobulins but no signs or symptoms of cryoglobulinemic diseases should be evaluated for the possibility that their cryoglobulinemia is a transient response to a recent or resolving infection. Those with a history of recent infection that also have a spontaneous and full resolution of their cryoglobulinemia need no further treatment. Individuals without a history of infection and not showing resolution of their cryoglobulinemia need to be further evaluated. Their cryoglobulins should be analyzed for their composition of immunoglobulin type(s) and complement component(s) and examined for the presence of the premalignant and malignant diseases associated with Type I disease as well as the infectious and autoimmune diseases associated with type II and type III disease. A study conducted in Italy on >140 asymptomatic individuals found five cases of hepatitis C-related and one case of hepatitis b-related cryoglobulinemia indicating that a complete clinical examination of asymptomatic individuals with cryoglobulinemia offers a means for finding people with serious but potentially treatable and even curable diseases. Individuals who show no evidence of a disease underlying their cryoglobulinemia and who remain asymptomatic should be followed closely for any changes that may indicate development of cryoglobulinemic disease.
Treatments for autoimmune disease have traditionally been immunosuppressive, anti-inflammatory, or palliative. Managing inflammation is critical in autoimmune diseases. Non-immunological therapies, such as hormone replacement in Hashimoto's thyroiditis or Type 1 diabetes mellitus treat outcomes of the autoaggressive response, thus these are palliative treatments. Dietary manipulation limits the severity of celiac disease. Steroidal or NSAID treatment limits inflammatory symptoms of many diseases. IVIG is used for CIDP and GBS. Specific immunomodulatory therapies, such as the TNFα antagonists (e.g. etanercept), the B cell depleting agent rituximab, the anti-IL-6 receptor tocilizumab and the costimulation blocker abatacept have been shown to be useful in treating RA. Some of these immunotherapies may be associated with increased risk of adverse effects, such as susceptibility to infection.
Helminthic therapy is an experimental approach that involves inoculation of the patient with specific parasitic intestinal nematodes (helminths). There are currently two closely related treatments available, inoculation with either Necator americanus, commonly known as hookworms, or Trichuris Suis Ova, commonly known as Pig Whipworm Eggs.
T cell vaccination is also being explored as a possible future therapy for autoimmune disorders.
It is diagnosed by lymph node excision biopsy.
Kikuchi disease is a self-limiting illness which has symptoms which may overlap with Hodgkin's lymphoma leading to misdiagnosis in some patients.
Antinuclear antibodies, antiphospholipid antibodies, anti-dsDNA, and rheumatoid factor are usually negative, and may help in differentiation from systemic lupus erythematosus.
AGID is diagnosed with a complete medical history, exam of patients motility and with special blood tests looking for autoantibodies consistent with neurologic autoimmunity. Blood tests included evaluations of immunofluorescence (neuronal nuclear and cytoplasmic antibodies), radioimmunoprecipitation assays (neuronal and muscle plasma membrane cation channel antibodies), and enzyme-linked immunosorbent assay (muscle striational antibodies). A finding, along with medical history, of ganglionic neuronal acetylcholine receptor and N-type voltage-gated calcium channel autoantibodies in the blood stream would result in a medically acceptable diagnosis of AGID.
There is no current cure. The only way to treat this disease is by treating symptoms. Commonly patients are prescribed immunosuppressive drugs. Another route would be to take collagen regulation drugs.
The first estimate of US prevalence for autoimmune diseases as a group was published in 1997 by Jacobson, et al. They reported US prevalence to be around 9 million, applying prevalence estimates for 24 diseases to a US population of 279 million. Jacobson's work was updated by Hayter & Cook in 2012. This study used Witebsky's postulates, as revised by Rose & Bona, to extend the list to 81 diseases and estimated overall cumulative US prevalence for the 81 autoimmune diseases at 5.0%, with 3.0% for males and 7.1% for females. The estimated community
prevalence, which takes into account the observation that many people have more than one autoimmune disease, was 4.5% overall, with 2.7% for males and 6.4% for females.
First and foremost is high level of clinical suspicion especially in young adults showing abnormal behavior as well as autonomic instability. The person may have alteration in level of sensorium and seizures as well during early stage of the illness. Clinical examination may further reveal delusions and hallucinations
According to the hygiene hypothesis, high levels of cleanliness expose children to fewer antigens than in the past, causing their immune systems to become overactive and more likely to misidentify own tissues as foreign, resulting in autoimmune conditions such as asthma.
In terms of diagnosis for this condition, the following methods/tests are available:
- Endoscopic
- CT scan
- Serum endocrine autoantibody screen
- Histologic test
The administration of immunotherapy, in association with chemotherapy or tumor removal, .
Immunosuppressive therapies, encompassing corticosteroids, azathioprine, methotrexate and more recently, rituximab, are the mainstay of therapy. Other treatments include PE, IVIG, and thymectomy. Patients reportedly exhibited a heterogenous response to immunomodulation.
Antiepileptics can be used for symptomatic relief of peripheral nerve hyperexcitability. Indeed, some patients have exhibited a spontaneous remission of symptoms.
Immunosuppressive therapy may be used in "type I" of this condition, ketoconazole can be used for "autoimmune polyendocrine syndrome type I" under certain conditions The component diseases are managed as usual, the challenge is to detect the possibility of any of the syndromes, and to anticipate other manifestations. For example, in a person with known Type 2 autoimmune polyendocrine syndrome but no features of Addison's disease, regular screening for antibodies against 21-hydroxylase may prompt early intervention and hydrocortisone replacement to prevent characteristic crises
An overlap syndrome is an autoimmune disease of connective tissue in which a person presents with symptoms of two or more diseases.
Examples of overlap syndromes include mixed connective tissue disease and scleromyositis. Diagnosis depends on which diseases the patient shows symptoms and has positive antibodies for in their lab serology.
In overlap syndrome, features of the following diseases are found (most common listed):
- Systemic lupus erythematosus (SLE),
- Systemic sclerosis,
- Polymyositis,
- Dermatomyositis,
- Rheumatoid arthritis (RA)
- Sjögren's syndrome
- Eosinophilic granulomatosis with polyangiitis (EGPA)
- Autoimmune thyroiditis
- Antiphospholipid antibody syndrome
The treatment of overlap syndrome is mainly based on the use of corticosteroids and immunosuppressants. Biologic drugs, i.e. anti-TNFα or anti-CD20 monoclonal antibodies, have been recently introduced as alternative treatments in refractory cases. There are some concerns with the use of anti-TNF agents in patients with systemic autoimmune diseases due to the risk of triggering disease exacerbations.
Diagnosis of AIR can be difficult due to the overlap of symptoms with other disorders. Examination of the fundus (inner surface of eye) can show no results or it can show narrowing of the blood vessels, abnormal colouration of the optic disc, and retinal atrophy. Fundus examination results are not indicative of autoimmune retinopathy but they are used to initiate the diagnostic process. An electroretinogram (eye test used to see abnormalities in the retina) is used to detect AIR. An abnormal electroretinogram (ERG) with respect to light and dark adaptations indicates AIR. The ERG also allows differentiation between cancer-associated retinopathy and melanoma-associated retinopathy. If the ERG shows cone responses, CAR can be prematurely diagnosed. If the ERG shows a significant decrease in b-wave amplitude, MAR can be prematurely diagnosed. To confirm, analysis for anti-retinal antibodies through Western blotting of serum collected from the patient is done.
Four subtypes are recognised, but the clinical utility of distinguishing subtypes is limited.
1. positive ANA and SMA, elevated immunoglobulin G (classic form, responds well to low dose steroids);
2. positive LKM-1 (typically female children and teenagers; disease can be severe), LKM-2 or LKM-3;
3. positive antibodies against soluble liver antigen (this group behaves like group 1) (anti-SLA, anti-LP)
4. no autoantibodies detected (~20%) (of debatable validity/importance)