Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Alternate cues may be particularly useful to an individual with environmental agnosia or prosopagnosia. Alternate cues for an individual with environmental agnosia may include color cues or tactile markers to symbolize a new room or to remember an area by. Prosopagnosics may use alternate cues such as a scar on an individual's face or crooked teeth in order to recognize the individual. Hair color and length can be helpful cues as well.
Using verbal descriptions may be helpful for individuals with certain types of agnosia. Individuals such as prosopagnosics may find it useful to listen to a description of their friend or family member and recognize them based on this description more easily than through visual cues.
A number of computer-based auditory training programs exist for children with generalized Auditory Processing Disorders (APD). In the visual system, it has been proven that adults with amblyopia can improve their visual acuity with targeted brain training programs (perceptual learning). A focused perceptual training protocol for children with amblyaudia called Auditory Rehabilitation for Interaural Asymmetry (ARIA) was developed in 2001 which has been found to improve dichotic listening performance in the non-dominant ear and enhance general listening skills. ARIA is now available in a number of clinical sites in the U.S., Canada, Australia and New Zealand. It is also undergoing clinical research trials involving electrophysiologic measures and activation patterns acquired through functional magnetic resonance imaging (fMRI) techniques to further establish its efficacy to remediate amblyaudia.
Universal Newborn Hearing Screenings (UNHS) is mandated in a majority of the United States. Auditory neuropathy is sometimes difficult to catch right away, even with these precautions in place. Parental suspicion of a hearing loss is a trustworthy screening tool for hearing loss, too; if it is suspected, that is sufficient reason to seek a hearing evaluation from an audiologist.
In most parts of Australia, hearing screening via AABR testing is mandated, meaning that essentially all congenital (i.e., not those related to later onset degenerative disorders) auditory neuropathy cases should be diagnosed at birth.
Individuals with conduction aphasia are able to express themselves fairly well, with some word finding and functional comprehension difficulty. Although people with aphasia may be able to express themselves fairly well, they tend to have issues repeating phrases, especially phrases that are long and complex. When asked to repeat something, the patient will be unable to do so without significant difficulty, repeatedly attempting to self-correct ("conduite d'approche"). When asked a question, however, patients can answer spontaneously and fluently.
Several standardized test batteries exist for diagnosing and classifying aphasias. These tests are capable of identifying conduction aphasia with relative accuracy. The Boston Diagnostic Aphasia Examination (BDAE) and the Western Aphasia Battery (WAB) are two commonly used test batteries for diagnosing conduction aphasia. These examinations involve a set of tests, which include asking patients to name pictures, read printed words, count aloud, and repeat words and non-words (such as "shwazel").
A clinical diagnosis of amblyaudia is made following dichotic listening testing as part of an auditory processing evaluation. Clinicians are advised to use newly developed dichotic listening tests that provide normative cut-off scores for the listener's dominant and non-dominant ears. These are the Randomized Dichotic Digits Test and the Dichotic Words Test. Older dichotic listening tests that provide normative information for the right and left ears can be used to supplement these two tests for support of the diagnosis (). If performance across two or more dichotic listening tests is normal in the dominant ear and significantly below normal in the non-dominant ear, a diagnosis of amblyaudia can be made. The diagnosis can also be made if performance in both ears is below normal but performance in the non-dominant ear is significantly poorer, thereby resulting in an abnormally large asymmetry between the two ears. Amblyaudia is emerging as a distinct subtype of auditory processing disorder (APD).
Expressive aphasia is classified as non-fluent aphasia, as opposed to fluent aphasia. Diagnosis is done on a case by case basis, as lesions often affect the surrounding cortex and deficits are highly variable among patients with aphasia.
A physician is typically the first person to recognize aphasia in a patient who is being treated for damage to the brain. Routine processes for determining the presence and location of lesion in the brain include Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. The physician will complete a brief assessment of the patient's ability to understand and produce language. For further diagnostic testing, the physician will refer the patient to a speech-language pathologist, who will complete a comprehensive evaluation.
In order to diagnose a patient who is suffering from Broca’s aphasia, there are certain commonly used tests and procedures. The Western Aphasia Battery (WAB) classifies individuals based on their scores on the subtests; spontaneous speech, auditory comprehension, repetition, and naming. The Boston Diagnostic Aphasia Examination (BDAE) can inform users what specific type of aphasia they may have, infer the location of lesion, and assess current language abilities. The Porch Index of Communication Ability (PICA) can predict potential recovery outcomes of the patients with aphasia. Quality of life measurement is also an important assessment tool. Tests such as the Assessment for Living with Aphasia (ALA) and the Satisfaction with Life Scale (SWLS) allow for therapists to target skills that are important and meaningful for the individual.
In addition to formal assessments, patient and family interviews are valid and important sources of information. The patient’s previous hobbies, interests, personality, and occupation are all factors that will not only impact therapy but may motivate them throughout the recovery process. Patient interviews and observations allow professionals to learn the priorities of the patient and family and determine what the patient hopes to regain in therapy. Observations of the patient may also be beneficial to determine where to begin treatment. The current behaviors and interactions of the patient will provide the therapist with more insight about the client and his or her individual needs. Other information about the patient can be retrieved from medical records, patient referrals from physicians, and the nursing staff.
In non-speaking patients who use manual languages, diagnosis is often based on interviews from the patient's acquaintances, noting the differences in sign production pre- and post- damage to the brain. Many of these patients will also begin to rely on non-linguistic gestures to communicate, rather than signing since their language production is hindered.
When testing the auditory system, there really is no characteristic presentation on the audiogram.
When diagnosing someone with auditory neuropathy, there is no characteristic level of functioning either. People can present relatively little dysfunction other than problems of hearing speech in noise, or can present as completely deaf and gaining no useful information from auditory signals.
Hearing aids are sometimes prescribed, with mixed success.
Some people with auditory neuropathy obtain cochlear implants, also with mixed success.
1. SCAN is the most common tool for diagnosing APD, and it also standardized. It is composed for four subsets: discrimination of monaurally presented single words against background noise, acoustically degraded single words, dichotically presented single words, sentence stimuli. Different versions of the test are used depending on the age of the patient.
2. Random Gap Detection Test (RGDT) is also a standardized test. It assesses an individual’s gap detection threshold of tones and white noise. The exam includes stimuli at four different frequencies (500, 1000, 2000, and 4000 Hz) and white noise clicks of 50 ms duration. It is a useful test because it provides an index of auditory temporal resolution. In children, an overall gap detection threshold greater than 20 ms means they have failed.
3. Gaps in Noise Test (GIN) also measures temporal resolution by testing the patient's gap detection threshold in white noise.
4. Pitch Patterns Sequence Test (PPT) and Duration Patterns Sequence Test (DPT) measure auditory pattern identification. The PPS has s series of three tones presented at either of two pitches (high or low). Meanwhile, the DPS has a series of three tones that vary in duration rather than pitch (long or short). Patients are then asked to describe the pattern of pitches presented.
Treatment for aphasias is generally individualized, focusing on specific language and communication improvements, and regular exercise with communication tasks. Regular therapy for conduction aphasics has been shown to result in steady improvement on the Western Aphasia Battery. However, conduction aphasia is a mild aphasia, and conduction aphasics score highly on the WAB at baseline.
Sign language therapy has been identified as one of the top five most common treatments for auditory verbal agnosia. This type of therapy is most useful because, unlike other treatment methods, it does not rely on fixing the damaged areas of the brain. This is particularly important with AVA cases because it has been so hard to identify the causes of the agnosia in the first place, much less treat those areas directly. Sign language therapy, then, allows the person to cope and work around the disability, much in the same way it helps deaf people. In the beginning of therapy, most will work on identifying key objects and establishing an initial core vocabulary of signs. After this, the patient graduates to expand the vocabulary to intangible items or items that are not in view or present. Later, the patient learns single signs and then sentences consisting of two or more signs. In different cases, the sentences are first written down and then the patient is asked to sign them and speak them simultaneously. Because different AVA patients vary in the level of speech or comprehension they have, sign language therapy learning order and techniques are very specific to the individual's needs.
Auditory perception can improve with time.There seems to be a level of neuroplasticity that allows patients to recover the ability to perceive environmental and certain musical sounds. Patients presenting with cortical hearing loss and no other associated symptoms recover to a variable degree, depending on the size and type of the cerebral lesion. Patients whose symptoms include both motor deficits and aphasias often have larger lesions with an associated poorer prognosis in regard to functional status and recovery.
Cochlear or auditory brainstem implantation could also be treatment options. Electrical stimulation of the peripheral auditory system may result in improved sound perception or cortical remapping in patients with cortical deafness. However, hearing aids are an inappropriate answer for cases like these. Any auditory signal, regardless if has been amplified to normal or high intensities, is useless to a system unable to complete its processing. Ideally, patients should be directed toward resources to aid them in lip-reading, learning American Sign Language, as well as speech and occupational therapy. Patients should follow-up regularly to evaluate for any long-term recovery.
Treating auditory verbal agnosia with intravenous immunoglobulin (IVIG) is controversial because of its inconsistency as a treatment method. Although IVIG is normally used to treat immune diseases, some individuals with auditory verbal agnosia have responded positively to the use of IVIG. Additionally, patients are more likely to relapse when treated with IVIG than other pharmacological treatments. IVIG is, thus, a controversial treatment as its efficacy in treating auditory verbal agnosia is dependent upon each individual and varies from case to case.
Cortical deafness is a rare form of sensorineural hearing loss caused by damage to the primary auditory cortex. Cortical deafness is an auditory disorder where the patient is unable to hear sounds but has no apparent damage to the anatomy of the ear (see auditory system), which can be thought of as the combination of auditory verbal agnosia and auditory agnosia. Patients with cortical deafness cannot hear any sounds, that is, they are not aware of sounds including non-speech, voices, and speech sounds. Although patients appear and feel completely deaf, they can still exhibit some reflex responses such as turning their head towards a loud sound.
Cortical deafness is caused by bilateral cortical lesions in the primary auditory cortex located in the temporal lobes of the brain. The ascending auditory pathways are damaged, causing a loss of perception of sound. Inner ear functions, however, remains intact. Cortical deafness is most often cause by stroke, but can also result from brain injury or birth defects. More specifically, a common cause is bilateral embolic stroke to the area of Heschl's gyri. Cortical deafness is extremely rare, with only twelve reported cases. Each case has a distinct context and different rates of recovery.
It is thought that cortical deafness could be a part of a spectrum of an overall cortical hearing disorder. In some cases, patients with cortical deafness have had recovery of some hearing function, resulting in partial auditory deficits such as auditory verbal agnosia. This syndrome might be difficult to distinguish from a bilateral temporal lesion such as described above.
In most individuals with expressive aphasia, the majority of recovery is seen within the first year following a stroke or injury. The majority of this improvement is seen in the first four weeks in therapy following a stroke and slows thereafter. However, this timeline will vary depending upon the type of stroke experienced by the patient. Patients who experienced an ischemic stroke may recover in the days and weeks following the stroke, and then experience a plateau and gradual slowing of recovery. On the contrary, patients who experienced a hemorrhagic stroke experience a slower recovery in the first 4–8 weeks, followed by a faster recovery which eventually stabilizes.
Numerous factors impact the recovery process and outcomes. Site and extent of lesion greatly impacts recovery. Other factors that may affect prognosis are age, education, gender, and motivation. Occupation, handedness, personality, and emotional state may also be associated with recovery outcomes.
Studies have also found that prognosis of expressive aphasia correlates strongly with the initial severity of impairment. However, it has been seen that continued recovery is possible years after a stroke with effective treatment. Timing and intensity of treatment is another factor that impacts outcomes. Research suggests that even in later stages of recovery, intervention is effective at improving function, as well as, preventing loss of function.
Unlike receptive aphasia, patients with expressive aphasia are aware of their errors in language production. This may further motivate a person with expressive aphasia to progress in treatment, which would affect treatment outcomes. On the other hand, awareness of impairment may lead to higher levels of frustration, depression, anxiety, or social withdrawal, which have been proven to negatively affect a person's chance of recovery.
Research has shown that PC based spatial hearing training software can help some of the children identified as failing to develop their spatial hearing skills (perhaps because of frequent bouts of otitis media with effusion). Further research is needed to discover if a similar approach would help those over 60 to recover the loss of their spatial hearing. One such study showed that dichotic test scores for the left ear improved with daily training. Related research into the plasticity of white-matter (see Lövdén et al. for example) suggests some recovery may be possible.
Music training leads to superior understanding of speech in noise across age groups and musical experience protects against age-related degradation in neural timing. Unlike speech (fast temporal information), music (pitch information) is primarily processed by areas of the brain in the right hemisphere. Given that it seems likely that the right ear advantage (REA) for speech is present from birth, it would follow that a left ear advantage for music is also present from birth and that MOC efferent inhibition (of the right ear) plays a similar role in creating this advantage. Does greater exposure to music increase conscious control of cochlear gain and inhibition? Further research is needed to explore the apparent ability of music to promote an enhanced capability of speech in noise recognition.
Bilateral digital hearing aids do not preserve localization cues (see, for example, Van den Bogaert et al., 2006) This means that audiologists when fitting hearing aids to patients (with a mild to moderate age related loss) risk negatively impacting their spatial hearing capability. With those patients who feel that their lack of understanding of speech in background noise is their primary hearing difficulty then hearing aids may simply make their problem even worse - their spatial hearing gain will be reduced by in the region of 10 dB. Although further research is needed, there is a growing number of studies which have shown that open-fit hearing aids are better able to preserve localisation cues (see, for example, Alworth 2011)
Auditory agnosia is a form of agnosia that manifests itself primarily in the inability to recognize or differentiate between sounds. It is not a defect of the ear or "hearing", but a neurological inability of the brain to process sound meaning. It is a disruption of the "what" pathway in the brain. Persons with auditory agnosia can physically hear the sounds and describe them using unrelated terms, but are unable to recognize them. They might describe the sound of some environmental sounds, such as a motor starting, as resembling a lion roaring, but would not be able to associate the sound with "car" or "engine", nor would they say that it "was" a lion creating the noise. Auditory agnosia is caused by damage to the secondary and tertiary auditory cortex of the temporal lobe of the brain.
APD is a difficult disorder to detect and diagnose. The subjective symptoms that lead to an evaluation for APD include an intermittent inability to process verbal information, leading the person to guess to fill in the processing gaps. There may also be disproportionate problems with decoding speech in noisy environments.
APD has been defined anatomically in terms of the integrity of the auditory areas of the nervous system. However, children with symptoms of APD typically have no evidence of neurological disease and the diagnosis is made on the basis of performance on behavioral auditory tests. Auditory processing is "what we do with what we hear", and in APD there is a mismatch between peripheral hearing ability (which is typically normal) and ability to interpret or discriminate sounds. Thus in those with no signs of neurological impairment, APD is diagnosed on the basis of auditory tests. There is, however, no consensus as to which tests should be used for diagnosis, as evidenced by the succession of task force reports that have appeared in recent years. The first of these occurred in 1996. This was followed by a conference organized by the American Academy of Audiology. Experts attempting to define diagnostic criteria have to grapple with the problem that a child may do poorly on an auditory test for reasons other than poor auditory perception: for instance, failure could be due to inattention, difficulty in coping with task demands, or limited language ability. In an attempt to rule out at least some of these factors, the American Academy of Audiology conference explicitly advocated that for APD to be diagnosed, the child must have a modality-specific problem, i.e. affecting auditory but not visual processing. However, an ASHA committee subsequently rejected modality-specificity as a defining characteristic of auditory processing disorders.
Psychopharmacological treatments include anti-psychotic medications. Psychology research shows that first step in treatment is for the patient to realize that the voices they hear are creation of their own mind. This realization is argued to allow patients to reclaim a measure of control over their lives. Some additional psychological interventions might allow for the process of controlling these phenomena of auditory hallucinations but more research is needed.
There are three primary distinctions of auditory agnosia that fall into two categories.
This may include a blood or other sera test for inflammatory markers such as those for autoinflammatory diseases.
Spatial hearing loss, refers to a form of deafness that is an inability to use spatial cues about where a sound originates from in space. This in turn affects the ability to understand speech in the presence of background noise.
As part of differential diagnosis, an MRI scan may be done to check for vascular anomalies, tumors, and structural problems like enlarged mastoids. MRI and other types of scan cannot directly detect or measure age-related hearing loss.
Given the unknown nature of MES, treatments have been largely dependent on an individual basis. Treatments can vary from being as little as self-reassurance to pharmaceutical medications.
Medications can be helpful, such as antipsychotics, benzodiazepines or antiepileptics, but there is very limited evidence for this. Some case studies have found that switching to a prednisolone steroid after a betamethasone steroid which caused MES helped alleviate hallucinations or the use of the acetylcholinesterase inhibitor, Donepezil, have also found that it successfully treated an individual's MES. However, because of the heterogeneous etiology, these methods cannot be applied as general treatment.
Other than treatment by medicinal means, individuals have also successfully alleviated musical hallucinations by cochlear implants, listening to different songs via an external source, or by attempting to block them through mental effort, depending on how severe their condition is.
Phonagnosia (from Ancient Greek φωνή "phone", "voice" and γνῶσις "gnosis", "knowledge") is a type of agnosia, or loss of knowledge, that involves a disturbance in the recognition of familiar voices and the impairment of voice discrimination abilities in which the affected individual does not suffer from comprehension deficits. Phonagnosia is an auditory agnosia, an acquired auditory processing disorder resulting from brain damage, other auditory agnosias include cortical deafness and auditory verbal agnosia also known as pure word deafness.
Since people suffering from phonagnosia do not suffer from aphasia, it is suggested that the structures of linguistic comprehension are functionally separate from those of the perception of the identity of the speaker who produced it.
Phonagnosia is the auditory equivalent of prosopagnosia. Unlike Prosopagnosia, investigations of phonagnosia have not been extensively pursued. Phonagnosia was first described by a study by Van Lancker and Cantor in 1982. The subjects in this study were asked to identify which of four names or faces matched a specific famous voice. The subjects could not complete the task. Since then, there have been a couple studies done on patients with phonagnosia. The clinical and radiologic findings with computerized tomographic scans cat scan in these cases suggest that recognition of familiar voices is impaired by damage to the inferior and parietal regions of the right hemisphere while voice discrimination is impaired by temporal lobe damage of either hemisphere. These studies have also shown evidence for a double dissociation between voice recognition and voice discrimination. Some patients will perform normally on the discrimination tasks but poorly on the recognition tasks; whereas the other patients will perform normally on the recognition tasks but poorly on the discrimination tasks. Patients did not perform poorly on both tasks.
Associative phonagnosia is a form of phonagnosia that develops with dementia or other focal neurodegenerative disorders. Some research has led to questions of other impairments in phonagnosics. Recently, studies have shown that phonagnosics also have trouble in recognizing the sounds of familiar instruments. As it is with voices, they also show deficiency in distinguishing between sounds from different instruments. Although the disability is shown, phonagnosics are much less affected in this area of sound discrimination. In distinguishing voices, it is a complete agnosia, but this is not the case for musical instrument sounds, as they can correctly identify some of them. Controversy arises in that not all phonagnosics exhibit these symptoms, and so not all researchers agree that it should be attributed to the damage suffered that causes phonagnosia. Much debate has arisen over the fact that it seems that separate areas of the brain are utilized to handle information from language and music. This has led some researchers to skeptically consider this impairment as a clear symptom of the disorder. Again, more research is needed to create a clearer conclusion.
An interesting attribute that phonagnosics possess is that they can correctly detect emotions in voices when someone talks to them. They can also correctly match an emotion with a facial expression. Although surprising, this finding is sensible because it is known and well agreed upon that the limbic system, involved in expressing emotions and detecting emotions of others, is a separate system within the brain. The limbic system is made up of several brain structures including the hippocampus, amygdala, anterior thalamic nuclei, septum, limbic cortex and fornix.
Presently, there is no therapy or treatment for phonagnosia. Clearly, more research is needed to accomplish the feat of developing treatment for the disorder. The lack of treatment stems from the lack of knowledge about the disorder. Increased research will reveal vital information needed to formulate effective treatments and therapies.