Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Psychopharmacological treatments include anti-psychotic medications. Psychology research shows that first step in treatment is for the patient to realize that the voices they hear are creation of their own mind. This realization is argued to allow patients to reclaim a measure of control over their lives. Some additional psychological interventions might allow for the process of controlling these phenomena of auditory hallucinations but more research is needed.
There are few treatments for many types of hallucinations. However, for those hallucinations caused by mental disease, a psychologist or psychiatrist should be alerted, and treatment will be based on the observations of those doctors. Antipsychotic and atypical antipsychotic medication may also be utilized to treat the illness if the symptoms are severe and cause significant distress. For other causes of hallucinations there is no factual evidence to support any one treatment is scientifically tested and proven. However, abstaining from hallucinogenic drugs, stimulant drugs, managing stress levels, living healthily, and getting plenty of sleep can help reduce the prevalence of hallucinations. In all cases of hallucinations, medical attention should be sought out and informed of one's specific symptoms.
One study from as early as 1895 reported that approximately 10% of the population experiences hallucinations. A 1996-1999 survey of over 13,000 people reported a much higher figure, with almost 39% of people reporting hallucinatory experiences, 27% of which daytime hallucinations, mostly outside the context of illness or drug use. From this survey, olfactory (smell) and gustatory (taste) hallucinations seem the most common in the general population.
Cognitive-Behavioral Therapy has been shown to help decrease the frequency and distressfulness of auditory hallucinations, particularly when other psychotic symptoms were presenting. Enhanced Supportive Therapy has been shown to reduce the frequency of auditory hallucinations, the violent resistance the patient displayed towards said hallucinations, and an overall decrease in the perceived malignancy of the hallucinations. Other cognitive and behavioral therapies have been used with mixed success.
To date, there is no successful method of treatment that "cures" musical hallucinations. There have been successful therapies in single cases that have ameliorated the hallucinations. Some of these successes include drugs such as neuroleptics, antidepressants, and certain anticonvulsive drugs. A musical hallucination was alleviated, for example, by antidepressant medications given to patients with depression. Sanchez reported that some authors have suggested that the use of hearing aids may improve musical hallucination symptoms. They believed that the external environment influences the auditory hallucinations, showing worsening of symptoms in quieter environments than in noisier ones. Oliver Sacks' patient, Mrs. O'C, reported being in an "ocean of sound" despite being in a quiet room due to a small thrombosis or infarction in her right temporal lobe. After treatment, Mrs. O'C was relinquished of her musical experience but said that, "I do miss the old songs. Now, with lots of them, I can't even recall them. It was like being given back a forgotten bit of my childhood again." Sacks also reported another elderly woman, Mrs. O'M, who had a mild case of deafness and reported hearing musical pieces. When she was treated with anticonvulsive medications, her musical hallucinations ceased but when asked if she missed them, she said "Not on your life."
In 73 individual cases reviewed by Evers and Ellger, 57 patients heard tunes that were familiar, while 5 heard unfamiliar tunes. These tunes ranged from religious pieces to childhood favorites, and also included popular songs from the radio. Vocal and instrumental forms of classical music were also identified in some patients. Keshavan found that the consistent feature of musical hallucinations was that it represented a personal memory trace. Memory traces refer to anything that may seem familiar to the patient, which indicated why certain childhood or familiar songs were heard.
Given the unknown nature of MES, treatments have been largely dependent on an individual basis. Treatments can vary from being as little as self-reassurance to pharmaceutical medications.
Medications can be helpful, such as antipsychotics, benzodiazepines or antiepileptics, but there is very limited evidence for this. Some case studies have found that switching to a prednisolone steroid after a betamethasone steroid which caused MES helped alleviate hallucinations or the use of the acetylcholinesterase inhibitor, Donepezil, have also found that it successfully treated an individual's MES. However, because of the heterogeneous etiology, these methods cannot be applied as general treatment.
Other than treatment by medicinal means, individuals have also successfully alleviated musical hallucinations by cochlear implants, listening to different songs via an external source, or by attempting to block them through mental effort, depending on how severe their condition is.
Using verbal descriptions may be helpful for individuals with certain types of agnosia. Individuals such as prosopagnosics may find it useful to listen to a description of their friend or family member and recognize them based on this description more easily than through visual cues.
Alternate cues may be particularly useful to an individual with environmental agnosia or prosopagnosia. Alternate cues for an individual with environmental agnosia may include color cues or tactile markers to symbolize a new room or to remember an area by. Prosopagnosics may use alternate cues such as a scar on an individual's face or crooked teeth in order to recognize the individual. Hair color and length can be helpful cues as well.
It is postulated that by the "release phenomenon" MES is caused by hypersensitivity in the auditory cortex caused by sensory deprivation, secondary to their hearing loss. This "hole" in the hearing range is "plugged" by the brain confabulating a piece of information – in this case a piece of music. A similar occurrence is seen with strokes of the visual cortex where a visual field defect occurs and the brain confabulates a piece of visual data to fill the spot. This is described by sufferers as an image in the visual field.
The hallucinations are usually not unpleasant but may cause irritation due to their persistent nature. It is common for sufferers to have a history of tinnitus.
Investigations such as magnetic resonance imaging or CT scanning and electroencephalograms (EEGs) may be worthwhile, but will rarely show any serious pathology. It is believed that because this kind of phenomenon is usually heterogenous in causation, a wide variety of factors need to be considered, which could give possible explanation for why MES is seen as under diagnosed. Some of these factors may include significant trauma to the head or any side-effects from substances such as antidepressants, marijuana, alcohol, procaine, or general anesthesia.
Psychosis is first and foremost a diagnosis of exclusion. So a new-onset episode of psychosis "cannot" be considered a symptom of a psychiatric disorder until other relevant and known causes of psychosis are properly excluded, or ruled out. Many clinicians improperly perform, or entirely miss this step, introducing avoidable diagnostic error and misdiagnosis.
An initial assessment includes a comprehensive history and physical examination by a physician, psychiatrist, psychiatric nurse practitioner or psychiatric physician assistant. Biological tests should be performed to exclude psychosis associated with or caused by substance use, medication, toxins, surgical complications, or other medical illnesses.
Delirium should be ruled out, which can be distinguished by visual hallucinations, acute onset and fluctuating level of consciousness, indicating other underlying factors, including medical illnesses. Excluding medical illnesses associated with psychosis is performed by using blood tests to measure:
- Thyroid-stimulating hormone to exclude hypo- or hyperthyroidism,
- Basic electrolytes and serum calcium to rule out a metabolic disturbance,
- Full blood count including ESR to rule out a systemic infection or chronic disease, and
- Serology to exclude syphilis or HIV infection.
Other investigations include:
- EEG to exclude epilepsy, and an
- MRI or CT scan of the head to exclude brain lesions.
Because psychosis may be precipitated or exacerbated by common classes of medications, medication-induced psychosis should be ruled out, particularly for first-episode psychosis. Both substance- and medication-induced psychosis can be excluded to a high level of certainty, using a
- Urinalysis and a
- Full serum toxicology screening.
Because some dietary supplements may also induce psychosis or mania, but cannot be ruled out with laboratory tests, a psychotic individual's family, partner, or friends should be asked whether the patient is currently taking any dietary supplements.
Common mistakes made when diagnosing people who are psychotic include:
- Not properly excluding delirium,
- Not appreciating medical abnormalities (e.g., vital signs),
- Not obtaining a medical history and family history,
- Indiscriminate screening without an organizing framework,
- Missing a toxic psychosis by not screening for substances "and" medications
- Not asking family or others about dietary supplements,
- Premature diagnostic closure, and
- Not revisiting or questioning the initial diagnostic impression of primary psychiatric disorder.
Only after relevant and known causes of psychosis are excluded, a mental health clinician may make a psychiatric differential diagnosis using a person's family history, incorporating information from the person with psychosis, and information from family, friends, or significant others.
Types of psychosis in psychiatric disorders may be established by formal rating scales. The Brief Psychiatric Rating Scale (BPRS) assesses the level of 18 symptom constructs of psychosis such as hostility, suspicion, hallucination, and grandiosity. It is based on the clinician's interview with the patient and observations of the patient's behavior over the previous 2–3 days. The patient's family can also answer questions on the behavior report. During the initial assessment and the follow-up, both positive and negative symptoms of psychosis can be assessed using the 30 item Positive and Negative Symptom Scale (PANSS).
Tactile hallucination is the false perception of tactile sensory input that creates a hallucinatory sensation of physical contact with an imaginary object. It is caused by the faulty integration of the tactile sensory neural signals generated in the spinal cord and the thalamus and sent to the primary somatosensory cortex (SI) and secondary somatosensory cortex (SII). Tactile hallucinations are recurrent symptoms of neurological diseases such as schizophrenia, Parkinson's disease, Ekbom's syndrome and delerium tremens. Patients who experience phantom limb pains also experience a type of tactile hallucination. Tactile hallucinations are also caused by drugs such as cocaine and alcohol.
Whatever the cause, the bodily related distortions can recur several times a day and may take some time to abate. Understandably, the person can become alarmed, frightened, and panic-stricken throughout the course of the hallucinations—maybe even hurt themselves or others around them. The symptoms of the syndrome themselves are not harmful and are likely to disappear with time.
Studies suggest that the prevalence of paraphrenia in the elderly population is around 2-4%.
1. SCAN is the most common tool for diagnosing APD, and it also standardized. It is composed for four subsets: discrimination of monaurally presented single words against background noise, acoustically degraded single words, dichotically presented single words, sentence stimuli. Different versions of the test are used depending on the age of the patient.
2. Random Gap Detection Test (RGDT) is also a standardized test. It assesses an individual’s gap detection threshold of tones and white noise. The exam includes stimuli at four different frequencies (500, 1000, 2000, and 4000 Hz) and white noise clicks of 50 ms duration. It is a useful test because it provides an index of auditory temporal resolution. In children, an overall gap detection threshold greater than 20 ms means they have failed.
3. Gaps in Noise Test (GIN) also measures temporal resolution by testing the patient's gap detection threshold in white noise.
4. Pitch Patterns Sequence Test (PPT) and Duration Patterns Sequence Test (DPT) measure auditory pattern identification. The PPS has s series of three tones presented at either of two pitches (high or low). Meanwhile, the DPS has a series of three tones that vary in duration rather than pitch (long or short). Patients are then asked to describe the pattern of pitches presented.
While paraphrenia can occur in both men and women, it is more common in women, even after the difference has been adjusted for life expectancies. The ratio of women with paraphrenia to men with paraphrenia is anywhere from 3:1 to 45:2
A number of computer-based auditory training programs exist for children with generalized Auditory Processing Disorders (APD). In the visual system, it has been proven that adults with amblyopia can improve their visual acuity with targeted brain training programs (perceptual learning). A focused perceptual training protocol for children with amblyaudia called Auditory Rehabilitation for Interaural Asymmetry (ARIA) was developed in 2001 which has been found to improve dichotic listening performance in the non-dominant ear and enhance general listening skills. ARIA is now available in a number of clinical sites in the U.S., Canada, Australia and New Zealand. It is also undergoing clinical research trials involving electrophysiologic measures and activation patterns acquired through functional magnetic resonance imaging (fMRI) techniques to further establish its efficacy to remediate amblyaudia.
A pseudohallucination is an involuntary sensory experience vivid enough to be regarded as a hallucination, but recognised by the patient not to be the result of external stimuli. Unlike normal hallucinations, which occurs when one sees, hears, smells, tastes or feels something that is not there, with a compelling feeling or thought that it is real, pseudohallucinations are recognised by the person as unreal.
In other words, it is a hallucination that is recognized as a hallucination, as opposed to a "normal" hallucination which would be perceived as real. An example used in psychiatry is the hearing of voices which are "inside the head" according to the patient; in contrast, a hallucination would be indistinguishable to the patient from a real external stimulus, e.g. "people were talking about me".
The term is not widely used in the psychiatric and medical fields, as it is considered ambiguous; the term "nonpsychotic hallucination" is preferred. Pseudohallucinations, then, are more likely to happen with a hallucinogenic drug. But "the current understanding of pseudohallucinations is mostly based on the work of Karl Jaspers".
A further distinction is sometimes made between pseudohallucinations and "parahallucinations", the latter being a result of damage to the peripheral nervous system.
They are considered a feature of conversion disorder, somatization disorder, and dissociative disorders. Also, pseudohallucinations can occur in people with visual/hearing loss, with the typical such type being Charles Bonnet syndrome.
The most challenging task for the examiner is to determine and obtain the correct symptoms and associate them with one of the olfactory disorders, as there are several of them and they are related to each other.
The first step the examiner usually takes is to investigate if the problem is olfactory or gustatory related. As it may be that the patient releases certain bodily odors that are causing them to have this perception.
If the examiner is able to confirm that the problem is olfactory related, the next step is to determine which olfactory disorder the patient suffers from. The following is a list of possible olfactory disorders:
- anosmia
- dysosmia
- hyperosmia
- hyposmia
- parosmia or troposmia
- phantosmia
The second step is very difficult for both the examiner and the patient as the patient has some difficulty describing their perception of the phantom odor. Furthermore, the patient is in a position of stress and anxiety thus it is crucial that the examiner be patient.
After determining the nature of the disorder, and confirming phantosmia, the examiner must then have the patient describe their perception of the phantom odor. In many cases, patients have described the odor to be that of something burning and rotten and have described it to be unpleasant and foul.
The third step for the examiner is to determine the health history of the patient to take note of head trauma, accidents, upper respiratory infections, allergic rhinitis or chronic rhinitis. Although these may be events that have resulted in the phantom odor, studies conducted by Zilstrof have found that the majority of phantosmia patients have no previous history of head trauma and upper respiratory infections.
Individuals with conduction aphasia are able to express themselves fairly well, with some word finding and functional comprehension difficulty. Although people with aphasia may be able to express themselves fairly well, they tend to have issues repeating phrases, especially phrases that are long and complex. When asked to repeat something, the patient will be unable to do so without significant difficulty, repeatedly attempting to self-correct ("conduite d'approche"). When asked a question, however, patients can answer spontaneously and fluently.
Several standardized test batteries exist for diagnosing and classifying aphasias. These tests are capable of identifying conduction aphasia with relative accuracy. The Boston Diagnostic Aphasia Examination (BDAE) and the Western Aphasia Battery (WAB) are two commonly used test batteries for diagnosing conduction aphasia. These examinations involve a set of tests, which include asking patients to name pictures, read printed words, count aloud, and repeat words and non-words (such as "shwazel").
Research efforts are focusing on prevention in identifying early signs from relatives with associated disorders similar with schizophrenia and those with prenatal and birth complications. Prevention has been an ongoing challenge because early signs of the disorder are similar to those of other disorders. Also, some of the schizophrenic related symptoms are often found in children without schizophrenia or any other diagnosable disorder.
Because there is no prescribed treatment, the first starting place is to reassure the CBS sufferer of their sanity, and some charities provide specialist hallucination counselling "buddies" (people who have had CBS, or have CBS and are no longer fazed by it) to talk to on the telephone. Sometimes it is carers and/or physicians that need advice and guidance.
The physician will consider on a case-by-case basis whether to treat any depression or other problems that may be related to CBS. A recent case report suggests selective serotonin reuptake inhibitors may be helpful.
A clinical diagnosis of amblyaudia is made following dichotic listening testing as part of an auditory processing evaluation. Clinicians are advised to use newly developed dichotic listening tests that provide normative cut-off scores for the listener's dominant and non-dominant ears. These are the Randomized Dichotic Digits Test and the Dichotic Words Test. Older dichotic listening tests that provide normative information for the right and left ears can be used to supplement these two tests for support of the diagnosis (). If performance across two or more dichotic listening tests is normal in the dominant ear and significantly below normal in the non-dominant ear, a diagnosis of amblyaudia can be made. The diagnosis can also be made if performance in both ears is below normal but performance in the non-dominant ear is significantly poorer, thereby resulting in an abnormally large asymmetry between the two ears. Amblyaudia is emerging as a distinct subtype of auditory processing disorder (APD).
Alice in Wonderland syndrome is a disorienting neuropsychological condition that affects perception. People experience size distortion such as micropsia, macropsia, pelopsia, or teleopsia. Size distortion may occur of other sensory modalities.
It is often associated with migraines, brain tumors, and the use of psychoactive drugs. It can also be the initial symptom of the Epstein–Barr virus (see mononucleosis). AiWS can be caused by abnormal amounts of electrical activity causing abnormal blood flow in the parts of the brain that process visual perception and texture.
Anecdotal reports suggest that the symptoms are common in childhood, with many people growing out of them in their teens. It appears that AiWS is also a common experience at sleep onset, and has been known to commonly arise due to a lack of sleep.
There is no treatment of proven effectiveness for CBS. Some people experience CBS for anywhere from a few days up to many years, and these hallucinations can last only a few seconds or continue for most of the day. For those experiencing CBS, knowing that they are suffering from this syndrome and not a mental illness seems to be the best treatment so far, as it improves their ability to cope with the hallucinations. Most people with CBS meet their hallucinations with indifference, but they can still be disturbing because they may interfere with daily life. Interrupting vision for a short time by closing the eyes or blinking is sometimes helpful.