Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The clinical diagnosis is backed up by investigative findings. Citrulline level in blood is decreased. Mitochondrial studies or NARP mtDNA evaluation plays a role in genetic diagnosis which can also be done prenatally.
Diagnosis is suspected clinically and family history, neuroimaging and genetic study helps to confirm Behr Syndrome.
Diffuse, symmetric white matter abnormalities were demonstrated by magnetic resonance imaging (MRI) suggesting that Behr syndrome may represent a disorder of white matter associated with an unknown biochemical abnormality.
Arts syndrome should be included in the differential diagnosis of infantile hypotonia and weakness aggravated by recurrent infection with a family history of X-linked inheritance. Sequence analysis of PRPS1, the only gene associated with Arts syndrome, has detected mutations in both kindreds reported to date. Arts syndrome patients were also found to have reduced levels of hypoxanthine levels in urine and uric acid levels in the serum. In vitro, PRS-1 activity was reduced in erythrocytes and fibroblasts.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Diagnosis requires a neurological examination and neuroimaging can be helpful.
BVVL can be differentially diagnosed from similar conditions like Fazio-Londe syndrome and amyotrophic lateral sclerosis, in that those two conditions don't involve sensorineural hearing loss, while BVVL, Madras motor neuron disease, Nathalie syndrome, and Boltshauser syndrome do. Nathalie syndrome does not involve lower cranial nerve symptoms, so it can be excluded if those are present. If there is evidence of lower motor neuron involvement, Boltshauser syndrome can be excluded. Finally, if there is a family history of the condition, then BVVL is more likely than MMND, as MMND tends to be sporadic.
Genetic testing is able to identify genetic mutations underying BVVL.
The severity and prognosis vary with the type of mutation involved.
The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with telangiectasia and sometimes increased infections, and confirmed by specific laboratory abnormalities (elevated alpha-fetoprotein levels, increased chromosomal breakage or cell death of white blood cells after exposure to X-rays, absence of ATM protein in white blood cells, or mutations in each of the person’s ATM genes).
A variety of laboratory abnormalities occur in most people with A-T, allowing for a tentative diagnosis to be made in the presence of typical clinical features. Not all abnormalities are seen in all patients. These abnormalities include:
- Elevated and slowly increasing alpha-fetoprotein levels in serum after 2 years of age
- Immunodeficiency with low levels of immunoglobulins (especially IgA, IgG subclasses, and IgE) and low number of lymphocytes in the blood
- Chromosomal instability (broken pieces of chromosomes)
- Increased sensitivity of cells to x-ray exposure (cells die or develop even more breaks and other damage to chromosomes)
- Cerebellar atrophy on MRI scan
The diagnosis can be confirmed in the laboratory by finding an absence or deficiency of the ATM protein in cultured blood cells, an absence or deficiency of ATM function (kinase assay), or mutations in both copies of the cell’s ATM gene. These more specialized tests are not always needed, but are particularly helpful if a child’s symptoms are atypical.
Neuroimaging like MRI is important. However, there was considerable intrafamilial variability regarding neuroimaging, with some individuals showing normal MRI findings. Early individual prognosis of such autosomal recessive cerebellar ataxias is not possible from early developmental milestones, neurological signs, or neuroimaging.
Prenatal screening is not typically done for FHM, however it may be performed if requested. As penetrance is high, individuals found to carry mutations should be expected to develop signs of FHM at some point in life.
Different types of ataxia:
- congenital ataxias (developmental disorders)
- ataxias with metabolic disorders
- ataxias with a DNA repair defect
- degenerative ataxias
- ataxia associated with other features.
Clinical diagnosis is conducted on individuals with age onset between late teens and late forties who show the initial characteristics for the recessive autosomal cerebellar ataxia.
The following tests are performed:
- MRI brain screening for cerebellum atrophy.
- Molecular genetic testing for SYNE-1 sequence analysis.
- Electrophysiologic studies for polyneurotherapy
- Neurological examination
Prenatal diagnosis and preimplantation genetic diagnosis (PGD) can be performed to identify the mothers carrying the recessive genes for cerebellar ataxia.
To gain a better understanding of the disease, researchers have retrospectively reviewed medical records of probands and others who were assessed through clinical examinations or questionnaires. Blood samples are collected from the families of the probands for genetic testing. These family members are assessed using their standard medical history, on their progression of Parkinson's like symptoms (Unified Parkinson's Disease Rating Scale), and on their progression of cognitive impairment such as dementia (Folstein Test).
Standard MRI scans have been performed on 1.5 Tesla scanners with 5 mm thickness and 5 mm spacing to screen for white matter lesions in identified families. If signal intensities of the MRI scans are higher in white matter regions than in grey matter regions, the patient is considered to be at risk for HDLS, although a number of other disorders can also produce white matter changes and the findings are not diagnostic without genetic testing or pathologic confirmation.
For a prognosis, treatment, and any other information, please consult your doctor.
In a sample of 19 children, a 1997 study found that 3 died before the age of 3, and 2 never learned to walk. The children had various levels of delayed development with developmental quotients from 60 to 85.
The long-term prognosis of Costeff syndrome is unknown, though it appears to have no effect on life expectancy at least up to the fourth decade of life. However, as mentioned previously, movement problems can often be severe enough to confine individuals to a wheelchair at an early age, and both visual acuity and spasticity tend to worsen over time.
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.
Diagnosis of FHM is made according to the following criteria:
- Two attacks of each of the following:
- At least one close (first or second degree) relative with FHM
- No other likely cause
Sporadic forms follow the same diagnostic criteria, with the exception of family history.
In all cases, family and patient history is used for diagnosis. Brain imaging techniques, such as MRI, CAT scans and SPECT, are used to look for signs of other familial conditions such as CADASIL or mitochondrial disease, and for evidence of cerebellar degeneration. With the discovery of causative genes, genetic sequencing can also be used to verify diagnosis (though not all genetic loci are known).
Treatment for this rare genetic disorder can be physical therapy, there have been antibiotics found to be affective, and surgery has been found to be another solution.
Currently, purine replacement via S-adenosylmethionine (SAM) supplementation in people with Arts syndrome appears to improve their condition. This suggests that SAM supplementation can alleviate symptoms of PRPS1 deficient patients by replacing purine nucleotides and open new avenues of therapeutic intervention. Other non-clinical treatment options include educational programs tailored to their individual needs. Sensorineural hearing loss has been treated with cochlear implantation with good results. Ataxia and visual impairment from optic atrophy are treated in a routine manner. Routine immunizations against common childhood infections and annual influenza immunization can also help prevent any secondary infections from occurring.
Regular neuropsychological, audiologic, and ophthalmologic examinations are also recommended.
Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the disease-causing mutation in the family is known.
The MRI of patients with VWM shows a well defined leukodystrophy. These MRIs display reversal of signal intensity of the white matter in the brain. Recovery sequences and holes in the white matter are also visible. Over time, the MRI is excellent at showing rarefaction and cystic degeneration of the white matter as it is replaced by fluid. To show this change, displaying white matter as a high signal (T2-weighted), proton density, and Fluid attenuated inversion recovery (FLAIR) images are the best approach. T2-weighted images also displaying cerebrospinal fluid and rarefied/cystic white matter. To view the remaining tissue, and get perspective on the damage done (also helpful in determining the rate of deterioration) (T1-weighted), proton density, and FLAIR images are ideal as they show radiating stripe patterns in the degenerating white matter. A failure of MRI images is their ineffectiveness and difficulty in interpretation in infants since the brain has not fully developed yet. Though some patterns and signs may be visible, it is still difficult to conclusively diagnose. This often leads to misdiagnosis in infants particularly if the MRI results in equivocal patterns or because of the high water content in infants' brains. The easiest way to fix this problem is a follow-up MRI in the following weeks. A potentially similar appearance of MRI with white matter abnormalities and cystic changes may be seen in some patients with hypomelanosis of Ito, some forms of Lowe's (oculocerebrorenal) disease, or some of the mucopolysaccharidoses.
The life expectancy of people with A-T is highly variable. The average is approximately 25 years, but continues to improve with advances in care. The two most common causes of death are chronic lung disease (about one-third of cases) and cancer (about one-third of cases).
There is currently no cure for Costeff syndrome. Treatment is supportive, and thus focuses on management of the symptoms. The resulting visual impairment, spasticity, and movement disorders are treated in the same way as similar cases occurring in the general population.
In diagnosing autosomal dominant cerebellar ataxia the individuals clinical history or their past health examinations, a current physical examination to check for any physical abnormalities, and a genetic screening of the patients genes and the genealogy of the family are done. The large category of cerebellar ataxia is caused by a deterioration of neurons in the cerebellum, therefore magnetic resonance imaging (MRI) is used to detect any structural abnormality such as lesions which are the primary cause of the ataxia. Computed tomography (CT) scans can also be used to view neuronal deterioration, but the MRI provides a more accurate and detailed picture.