Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of infants suffering birth asphyxia by lowering the core body temperature is now known to be an effective therapy to reduce mortality and improve neurological outcome in survivors, and hypothermia therapy for neonatal encephalopathy begun within 6 hours of birth significantly increases the chance of normal survival in affected infants.
There has long been a debate over whether newborn infants with birth asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
IH/BA is also a causitive factor in cardiac and circulatory birth defects the sixth most expensive condition, as well as premature birth and low birth weight the second most expensive and it is one of the contributing factors to infant respiratory distress syndrome (RDS) also known as hyaline membrane disease, the most expensive medical condition to treat and the number one cause of infant mortality.
A 2008 bulletin from the World Health Organization estimates that 900,000 total infants die each year from birth asphyxia, making it a leading cause of death for newborns.
In the United States, intrauterine hypoxia and birth asphyxia was listed as the tenth leading cause of neonatal death.
There is current controversy regarding the medicolegal definitions and impacts of birth asphyxia. Plaintiff's attorneys often take the position that birth asphyxia is often preventable, and is often due to substandard care and human error. They have utilized some studies in their favor that have demonstrated that, "...although other potential causes exist, asphyxia and hypoxic-ischemic encephalopathy affect a substantial number of babies, and they are preventable causes of cerebral palsy." The American Congress of Obstetricians and Gynecologists disputes that conditions such as cerebral palsy are usually attributable to preventable causes, instead associating them with circumstances arising prior to birth and delivery.
Obstetric ultrasound has become useful in the assessment of the cervix in women at risk for premature delivery. A short cervix preterm is undesirable: A cervical length of less than 25 mm at or before 24 weeks of gestational age is the most common definition of cervical incompetence.
Fetal fibronectin (fFN) has become an important biomarker—the presence of this glycoprotein in the cervical or vaginal secretions indicates that the border between the chorion and deciduas has been disrupted. A positive test indicates an increased risk of preterm birth, and a negative test has a high predictive value. It has been shown that only 1% of women in questionable cases of preterm labor delivered within the next week when the test was negative.
High risk infants may be identified by fetal tachycardia, bradycardia or absence of fetal accelerations upon CTG in utero, at birth the infant may look cachexic and show signs of yellowish meconium staining on skin, nail and the umbillical cord, these infants usually progress onto Infant Respiratory distress syndrome within 4 hours. Investigations which can confirm the diagnosis are fetal chest x-ray, which will show hyperinflation, diaphragmatic flattening, cardiomegaly, patchy atelectasis and consolidation, and ABG samples, which will show decreased oxygen levels.
The mortality rate of meconium-stained infants is considerably higher than that of non-stained infants; meconium aspiration used to account for a significant proportion of neonatal deaths. Residual lung problems are rare but include symptomatic cough, wheezing, and persistent hyperinflation for up to five to ten years. The ultimate prognosis depends on the extent of CNS injury from asphyxia and the presence of associated problems such as pulmonary hypertension. Fifty percent of newborns affected by meconium aspiration would die fifteen years ago; however, today the percent has dropped to about twenty.
Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia; on the other hand, the outcome of severe cerebral hypoxia will depend on the success of damage control, amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored.
If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. A general consequence may be epilepsy. The long-term effects will depend on the purpose of that portion of the brain. Damage to the Broca's area and the Wernicke's area of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.
The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long-term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by carbon monoxide-induced changes in the myelin sheath surrounding neurons.
If hypoxia results in coma, the length of unconsciousness is often indicative of long-term damage. In some cases coma can give the brain an opportunity to heal and regenerate, but, in general, the longer a coma, the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.
Long-term comas can have a significant impact on a patient's families. Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma. Adjusting to the realities of ventilators, feeding tubes, bedsores, and muscle wasting may be difficult. Treatment decision often involve complex ethical choices and can strain family dynamics.
Cord blood gas analysis can be used to determine if there is perinatal hypoxia/asphyxia, which are potential causes of hypoxic-ischemic encephalopathy or cerebral palsy, and give insight into causes of intrapartum fetal distress. Cord blood gas analysis is indicated for high-risk pregnancies, in cases where C-sections occurred due to fetal compromise, if there were abnormal fetal heart rate patterns, Apgar scores of 3 or lower, intrapartum fever, or multifetal gestation.
Evidence of brain injury related to the hypoxic-ischemic events that cause neonatal encephalopathy can be seen with brain MRIs, CTs, magnetic resonance spectroscopy imaging or ultrasounds.
Neonatal encephalopathy may be assessed using Sarnat staging.
For newborn infants starved of oxygen during birth there is now evidence that hypothermia therapy for neonatal encephalopathy applied within 6 hours of cerebral hypoxia effectively improves survival and neurological outcome. In adults, however, the evidence is less convincing and the first goal of treatment is to restore oxygen to the brain. The method of restoration depends on the cause of the hypoxia. For mild-to-moderate cases of hypoxia, removal of the cause of hypoxia may be sufficient. Inhaled oxygen may also be provided. In severe cases treatment may also involve life support and damage control measures.
A deep coma will interfere with body's breathing reflexes even after the initial cause of hypoxia has been dealt with; mechanical ventilation may be required. Additionally, severe cerebral hypoxia causes an elevated heart rate, and in extreme cases the heart may tire and stop pumping. CPR, defibrilation, epinephrine, and atropine may all be tried in an effort to get the heart to resume pumping. Severe cerebral hypoxia can also cause seizures, which put the patient at risk of self-injury, and various anti-convulsant drugs may need to be administered before treatment.
There has long been a debate over whether newborn infants with cerebral hypoxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
Brain damage can occur both during and after oxygen deprivation. During oxygen deprivation, cells die due to an increasing acidity in the brain tissue (acidosis). Additionally, during the period of oxygen deprivation, materials that can easily create free radicals build up. When oxygen enters the tissue these materials interact with oxygen to create high levels of oxidants. Oxidants interfere with the normal brain chemistry and cause further damage (this is known as "reperfusion injury").
Techniques for preventing damage to brain cells are an area of ongoing research. Hypothermia therapy for neonatal encephalopathy is the only evidence-supported therapy, but antioxidant drugs, control of blood glucose levels, and hemodilution (thinning of the blood) coupled with drug-induced hypertension are some treatment techniques currently under investigation. Hyperbaric oxygen therapy is being evaluated with the reduction in total and myocardial creatine phosphokinase levels showing a possible reduction in the overall systemic inflammatory process.
In severe cases it is extremely important to act quickly. Brain cells are very sensitive to reduced oxygen levels. Once deprived of oxygen they will begin to die off within five minutes.
Well-designed clinical trials for stroke treatment in neonates are lacking Recent clinical trials show that therapeutic intervention by brain cooling beginning up to 6 hours after perinatal asphyxia reduces cerebral injury and may improve outcome in term infants, indicating cell death is both delayed and preventable
Pancaspase inhibition and Casp3-selective inhibition have been found to be neuroprotective in neonatal rodents with models of neonatal brain injury, which may lead to pharmacological intervention In a study done by Chauvier, "et al.", it is suggested that a Caspase inhibitor, TRP601, is a candidate for neuroprotective strategy in prenatal brain injury conditions. They found a lack of detectable side effects in newborn rodents and dogs. This may be a useful treatment in combination with hypothermia.
MRI has proven valuable for defining brain injury in the neonate, but animal models are still needed to identify causative mechanisms and to develop neuroprotective therapies. In order to model human fetal or neonatal brain injury, one needs a species in which a similar proportion of brain development occurs in utero, the volume of white to grey matter is similar to the human brain, an insult can be delivered at an equivalent stage of development, the physiological outcome of the insult can be monitored, and neurobehavioral parameters can be tested. Some animals that meet these criteria are sheep, non-human primates, rabbits, spiny mice, and guinea pigs.
Transplantation of neural stem cells and umbilical cord stem cells is currently being trialed in neonatal brain injury, but it is not yet known if this therapy is likely to be successful.
Perinatal asphyxia is the medical condition resulting from deprivation of oxygen (hypoxia) to a newborn infant long enough to cause apparent harm. It results most commonly from a drop in maternal blood pressure or interference during delivery with blood flow to the infant's brain. This can occur as a result of inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
In the past, treatment options were limited to supportive medical therapy. Nowadays neonatal encephalopathy is treated using hypothermia therapy.
Some evidence suggests that magnesium sulfate administered to mothers prior to early preterm birth reduces the risk of cerebral palsy in surviving neonates. Due to the risk of adverse effects treatments may have, it is unlikely that treatments to prevent neonatal strokes or other hypoxic events would be given routinely to pregnant women without evidence that their fetus was at extreme risk or has already suffered an injury or stroke. This approach might be more acceptable if the pharmacologic agents were endogenously occurring substances (those that occur naturally in an organism), such as creatine or melatonin, with no adverse side-effects.
Because of the period of high neuronal plasticity in the months after birth, it may be possible to improve the neuronal environment immediately after birth in neonates considered to be at risk of neonatal stroke. This may be done by enhancing the growth of axons and dendrites, synaptogenesis and myelination of axons with systemic injections of neurotrophins or growth factors which can cross the blood–brain barrier.
To counter the effects of high-altitude diseases, the body must return arterial p toward normal. Acclimatization, the means by which the body adapts to higher altitudes, only partially restores p to standard levels. Hyperventilation, the body’s most common response to high-altitude conditions, increases alveolar p by raising the depth and rate of breathing. However, while p does improve with hyperventilation, it does not return to normal. Studies of miners and astronomers working at 3000 meters and above show improved alveolar p with full acclimatization, yet the p level remains equal to or even below the threshold for continuous oxygen therapy for patients with chronic obstructive pulmonary disease (COPD). In addition, there are complications involved with acclimatization. Polycythemia, in which the body increases the number of red blood cells in circulation, thickens the blood, raising the danger that the heart can’t pump it.
In high-altitude conditions, only oxygen enrichment can counteract the effects of hypoxia. By increasing the concentration of oxygen in the air, the effects of lower barometric pressure are countered and the level of arterial p is restored toward normal capacity. A small amount of supplemental oxygen reduces the equivalent altitude in climate-controlled rooms. At 4000 m, raising the oxygen concentration level by 5 percent via an oxygen concentrator and an existing ventilation system provides an altitude equivalent of 3000 m, which is much more tolerable for the increasing number of low-landers who work in high altitude. In a study of astronomers working in Chile at 5050 m, oxygen concentrators increased the level of oxygen concentration by almost 30 percent (that is, from 21 percent to 27 percent). This resulted in increased worker productivity, less fatigue, and improved sleep.
Oxygen concentrators are uniquely suited for this purpose. They require little maintenance and electricity, provide a constant source of oxygen, and eliminate the expensive, and often dangerous, task of transporting oxygen cylinders to remote areas. Offices and housing already have climate-controlled rooms, in which temperature and humidity are kept at a constant level. Oxygen can be added to this system easily and relatively cheaply.
A prescription renewal for home oxygen following hospitalization requires an assessment of the patient for ongoing hypoxemia.
TTN is a diagnosis of exclusion as it is a benign condition that can have symptoms and signs similar to more serious conditions, such as respiratory distress syndrome. A chest X-ray may show a radiopaque line - fluid - in the horizontal fissure of the right lung, fluid infiltrate throughout alveoli or fluid in individual lung lobes. The lungs may also appear hyperinflated.
Transient tachypnea of the newborn occurs in approximately 1 in 100 preterm infants and 3.6-5.7 per 1000 term infants. It is most common in infants born by Cesarian section without a trial of labor after 35 weeks' gestation. Male infants and infants with an umbilical cord prolapse or perinatal asphyxia are at higher risk. Parental risk factors include use of pain control or anesthesia during labor, asthma, and diabetes.
Situations that can cause asphyxia include but are not limited to: the constriction or obstruction of airways, such as from asthma, laryngospasm, or simple blockage from the presence of foreign materials; from being in environments where oxygen is not readily accessible: such as underwater, in a low oxygen atmosphere, or in a vacuum; environments where sufficiently oxygenated air is present, but cannot be adequately breathed because of air contamination such as excessive smoke.
Other causes of oxygen deficiency include
but are not limited to:
- Acute respiratory distress syndrome
- Carbon monoxide inhalation, such as that from a car exhaust and the smoke's emission from a lighted cigarette: carbon monoxide has a higher affinity than oxygen to the hemoglobin in the blood's red blood corpuscles, bonding with it tenaciously, and, in the process, displacing oxygen and preventing the blood from transporting oxygen around the body
- Contact with certain chemicals, including pulmonary agents (such as phosgene) and blood agents (such as hydrogen cyanide)
- Drowning
- Drug overdose
- Exposure to extreme low pressure or vacuum to the pattern (see space exposure)
- Hanging, specifically suspension or short drop hanging
- Self-induced hypocapnia by hyperventilation, as in shallow water or deep water blackout and the choking game
- Inert gas asphyxiation
- Congenital central hypoventilation syndrome, or primary alveolar hypoventilation, a disorder of the autonomic nervous system in which a patient must consciously breathe; although it is often said that persons with this disease will die if they fall asleep, this is not usually the case
- Respiratory diseases
- Sleep apnea
- A seizure which stops breathing activity
- Strangling
- Breaking the wind pipe.
- Prolonged exposure to chlorine gas
When the pulmonary capillary pressure remains elevated chronically (for at least 2 weeks), the lungs become even more resistant to pulmonary edema because the lymph vessels expand greatly, increasing their capability of carrying fluid away from the interstitial spaces perhaps as much as 10-fold. Therefore, in patients with chronic mitral stenosis, pulmonary capillary pressures of 40 to 45 mm Hg have been measured without the development of lethal pulmonary edema.[Guytun and Hall physiology]
Hypoxia exists when there is a reduced amount of oxygen in the tissues of the body. Hypoxemia refers to a reduction in PO2 below the normal range, regardless of whether gas exchange is impaired in the lung, CaO2 is adequate, or tissue hypoxia exists. There are several potential physiologic mechanisms for hypoxemia, but in patients with COPD the predominant one is V/Q mismatching, with or without alveolar hypoventilation, as indicated by PaCO2. Hypoxemia caused by V/Q mismatching as seen in COPD is relatively easy to correct, so that only comparatively small amounts of supplemental oxygen (less than 3 L/min for the majority of patients) are required for LTOT. Although hypoxemia normally stimulates ventilation and produces dyspnea, these phenomena and the other symptoms and signs of hypoxia are sufficiently variable in patients with COPD as to be of limited value in patient assessment. Chronic alveolar hypoxia is the main factor leading to development of cor pulmonale—right ventricular hypertrophy with or without overt right ventricular failure—in patients with COPD. Pulmonary hypertension adversely affects survival in COPD, to an extent that parallels the degree to which resting mean pulmonary artery pressure is elevated. Although the severity of airflow obstruction as measured by FEV1 is the best correlate with overall prognosis in patients with COPD, chronic hypoxemia increases mortality and morbidity for any severity of disease. Large-scale studies of LTOT in patients with COPD have demonstrated a dose-response relationship between daily hours of oxygen use and survival. There is reason to believe that continuous, 24-hours-per-day oxygen use in appropriately selected patients would produce a survival benefit even greater than that shown in the NOTT and MRC studies.
When a baby is born bottom first there is more risk that the birth will not be straight forward and that the baby could be harmed. For example, when the baby's head passes through the mother’s pelvis the umbilical cord can be compressed which prevents delivery of oxygenated blood to the baby. Due to this and other risks, babies in breech position are usually born by a planned caesarean section in developed countries.
Caesarean section reduces the risk of harm or death for the baby but does increase risk of harm to the mother compared with a vaginal delivery. It is best if the baby is in a head down position so that they can be born vaginally with less risk of harm to both mother and baby. The next section is looking at External cephalic version or ECV which is a method that can help the baby turn from a breech position to a head down position.
Vaginal birth of a breech baby has its risks but caesarean sections are not always available or possible, a mother might arrive in hospital at a late stage of her labour or may choose not to have a caesarean section. In these cases, it is important that the clinical skills needed to deliver breech babies are not lost so that mothers and babies are as safe as possible. Compared with developed countries, planned caesarean sections have not produced as good results in developing countries - it is suggested that this is due to more breech vaginal deliveries being performed by experienced, skilled practitioners in these settings.
In twin pregnancies, it is very common for one or both babies to be in the breech position. Most often twin babies do not have the chance to turn around because they are born prematurely. If both babies are in the breech position and the mother has gone into labour early, a cesarean section may be the best option. About 30-40% of twin pregnancies result in only one baby being in the breech position. If this is the case, the babies can be born vaginally. After the first baby who is not in the breech position is delivered, the baby who is presented in the breech position may turn itself around, if this does not happen another procedure may performed called the breech extraction. The breech extraction is the procedure that involves the obstetrician grabbing the second twin's feet and pulling him/her into the birth canal. This will help with delivering the second twin vaginally. However, if the second twin is larger than the first, complications with delivering the second twin vaginally may arise and a cesarean section should be performed. At times, the first twin (the twin closest to the birth canal) can be in the breech position with the second twin being in the cephalic position (vertical). When this occurs, risks of complications are higher than normal. In particular, a serious complication known as Locked twins. This is when both babies interlock their chins during labour. When this happens a cesarean section should be performed immediately.
LBW is closely associated with fetal and Perinatal mortality and Morbidity, inhibited growth and cognitive development, and chronic diseases later in life. At the population level, the proportion of babies with a LBW is an indicator of a multifaceted public-health problem that includes long-term maternal malnutrition, ill health, hard work and poor health care in pregnancy. On an individual basis, LBW is an important predictor of newborn health and survival and is associated with higher risk of infant and childhood mortality.
Low birth weight constitutes as sixty to eighty percent of the infant mortality rate in developing countries. Infant mortality due to low birth weight is usually directly causal, stemming from other medical complications such as preterm birth, poor maternal nutritional status, lack of prenatal care, maternal sickness during pregnancy, and an unhygienic home environment. According to an analysis by University of Oregon, reduced brain volume in children is also tied to low birth-weight.
A study by the Agency for Healthcare Research and Quality (AHRQ) found that of the 3.8 million births that occurred in the United States in 2011, approximately 6.1% (231,900) were diagnosed with low birth weight (<2,500 g). Approximately 49,300 newborns (1.3%) weighed less than 1,500 grams (VLBW). Infants born at low birth weight are at a higher risk for developing neonatal infection.
Those infants that have an increased risk of developing hypoglycemia shortly after birth are:
- preterm
- asphyxia
- cold stress
- congestive heart failure
- sepsis
- Rh disease
- discordant twin
- erythroblastosis fetalis
- polycythemia
- microphallus or midline defect
- respiratory disease
- maternal glucose IV
- maternal epidural
- postmaturity
- hyperinssulinnemia
- endocrine disorders
- inborn errors of metabolism
- diabetic mother
- maternal toxemia
- intrapartum fever