Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Assessment will usually include an interview with the child’s caregiver, observation of the child in an unstructured setting, a hearing test, and standardized tests of language and nonverbal ability. There is a wide range of language assessments in English. Some are restricted for use by speech and language professionals (therapists or SALTs in the UK, speech-language pathologists, SLPs, in the US and Australia).
A commonly used test battery for diagnosis of SLI is the Clinical Evaluation of Language Fundamentals (CELF).
Assessments that can be completed by a parent or teacher can be useful to identify children who may require more in-depth evaluation.
The Grammar and Phonology Screening (GAPS) test is a quick (ten minute) simple and accurate screening test developed and standardized in the UK. It is suitable for children from 3;4 to 6;8 years;months and can be administered by professionals and non-professionals (including parents) alike, and has been demonstrated to be highly accurate (98% accuracy) in identifying impaired children who need specialist help vs non-impaired children. This makes it potentially a feasible test for widespread screening.
The Children’s Communication Checklist (CCC–2) is a parent questionnaire suitable for testing language skills in school-aged children.
Informal assessments, such as language samples, may also be used. This procedure is useful when the normative sample of a given test is inappropriate for a given child, for instance, if the child is bilingual and the sample was of monolingual children. It is also an ecologically valid measure of all aspects of language (e.g. semantics, syntax, pragmatics, etc.).
To complete a language sample, the SLP will spend about 15 minutes talking with the child. The sample may be of a conversation (Hadley, 1998), or narrative retell. In a narrative language sample, the SLP will tell the child a story using a wordless picture book (e.g. "Frog Where Are You?", Mayer, 1969), then ask the child to use the pictures and tell the story back.
Language samples are typically transcribed using computer software such as the Systematic Analysis of Language Software (SALT, Miller et al. 2012), and then analyzed. For example, the SLP might look for whether the child introduces characters to their story or jumps right in, whether the events follow a logical order, and whether the narrative includes a main idea or theme and supporting details.
Epidemiological surveys, in the US and Canada, estimated the prevalence of SLI in 5-year-olds at around 7 percent. However, neither study adopted the stringent 'discrepancy' criteria of the Diagnostic and Statistical Manual of Mental Disorders or ICD-10; SLI was diagnosed if the child scored below cut-off on standardized language tests, but had a nonverbal IQ of 90 or above and no other exclusionary criteria.
Although qualitative and quantitative studies exist, there is little consensus on the proper method to assess for apraxia. The criticisms of past methods include failure to meet standard psychometric properties as well as research-specific designs that translate poorly to non-research use.
The Test to Measure Upper Limb Apraxia (TULIA) is one method of determining upper limb apraxia through the qualitative and quantitative assessment of gesture production. In contrast to previous publications on apraxic assessment, the reliability and validity of TULIA was thoroughly investigated. The TULIA consists of subtests for the imitation and pantomime of non-symbolic (“put your index finger on top of your nose”), intransitive (“wave goodbye”) and transitive (“show me how to use a hammer”) gestures. Discrimination (differentiating between well- and poorly performed tasks) and recognition (indicating which object corresponds to a pantomimed gesture) tasks are also often tested for a full apraxia evaluation.
However, there may not be a strong correlation between formal test results and actual performance in everyday functioning or activities of daily living (ADLs). A comprehensive assessment of apraxia should include formal testing, standardized measurements of ADLs, observation of daily routines, self-report questionnaires and targeted interviews with the patients and their relatives.
As stated above, apraxia should not be confused with aphasia; however, they frequently occur together. It has been stated that apraxia is so often accompanied by aphasia that many believe that if a person displays AOS; it should be assumed that the patient also has some level of aphasia.
Expressive aphasia is classified as non-fluent aphasia, as opposed to fluent aphasia. Diagnosis is done on a case by case basis, as lesions often affect the surrounding cortex and deficits are highly variable among patients with aphasia.
A physician is typically the first person to recognize aphasia in a patient who is being treated for damage to the brain. Routine processes for determining the presence and location of lesion in the brain include Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. The physician will complete a brief assessment of the patient's ability to understand and produce language. For further diagnostic testing, the physician will refer the patient to a speech-language pathologist, who will complete a comprehensive evaluation.
In order to diagnose a patient who is suffering from Broca’s aphasia, there are certain commonly used tests and procedures. The Western Aphasia Battery (WAB) classifies individuals based on their scores on the subtests; spontaneous speech, auditory comprehension, repetition, and naming. The Boston Diagnostic Aphasia Examination (BDAE) can inform users what specific type of aphasia they may have, infer the location of lesion, and assess current language abilities. The Porch Index of Communication Ability (PICA) can predict potential recovery outcomes of the patients with aphasia. Quality of life measurement is also an important assessment tool. Tests such as the Assessment for Living with Aphasia (ALA) and the Satisfaction with Life Scale (SWLS) allow for therapists to target skills that are important and meaningful for the individual.
In addition to formal assessments, patient and family interviews are valid and important sources of information. The patient’s previous hobbies, interests, personality, and occupation are all factors that will not only impact therapy but may motivate them throughout the recovery process. Patient interviews and observations allow professionals to learn the priorities of the patient and family and determine what the patient hopes to regain in therapy. Observations of the patient may also be beneficial to determine where to begin treatment. The current behaviors and interactions of the patient will provide the therapist with more insight about the client and his or her individual needs. Other information about the patient can be retrieved from medical records, patient referrals from physicians, and the nursing staff.
In non-speaking patients who use manual languages, diagnosis is often based on interviews from the patient's acquaintances, noting the differences in sign production pre- and post- damage to the brain. Many of these patients will also begin to rely on non-linguistic gestures to communicate, rather than signing since their language production is hindered.
Individuals with conduction aphasia are able to express themselves fairly well, with some word finding and functional comprehension difficulty. Although people with aphasia may be able to express themselves fairly well, they tend to have issues repeating phrases, especially phrases that are long and complex. When asked to repeat something, the patient will be unable to do so without significant difficulty, repeatedly attempting to self-correct ("conduite d'approche"). When asked a question, however, patients can answer spontaneously and fluently.
Several standardized test batteries exist for diagnosing and classifying aphasias. These tests are capable of identifying conduction aphasia with relative accuracy. The Boston Diagnostic Aphasia Examination (BDAE) and the Western Aphasia Battery (WAB) are two commonly used test batteries for diagnosing conduction aphasia. These examinations involve a set of tests, which include asking patients to name pictures, read printed words, count aloud, and repeat words and non-words (such as "shwazel").
TMoA is diagnosed by the referring physician and speech-language pathologist (SLP). The overall sign of TMoA is nonfluent, reduced, fragmentary echoic, and perseverative speech with frequent hesitations and pauses. Patients with TMoA also have difficulty initiating and maintaining speech. However, speech articulation and auditory comprehension remain typical. The hallmark sign of TMoA is intact repetition in the presence of these signs and symptoms.
TMoA, or any other type of aphasia, is identified and diagnosed through the screening and assessment process. Screening can be conducted by a SLP or other professional when there is a suspected aphasia. The screening does not diagnose aphasia, rather it points to the need for a further comprehensive assessment. A screening typically includes evaluation of oral motor functions, speech production skills, comprehension, use of written and verbal language, cognitive communication, swallowing, and hearing. Both the screening and assessment must be sensitive to the patient’s linguistic and cultural differences. An individual will be recommended to receive a comprehensive assessment if their screening shows signs of aphasia. Under the American Speech-Language-Hearing Association (ASHA) and World Health Organization (WHO) guidelines and the "International Classification of Functioning, Disability and Health" (ICF) framework, the comprehensive assessment encompasses not only speech and language, but also impairments in body structure and function, co-morbid deficits, limitations in activity and participation, and contextual (environmental and personal) factors. The assessment can be static (current functioning) or dynamic (ongoing) and the assessment tools can be standardized or nonstandardized. Typically, the assessment for aphasia includes a gathering of a case history, a self-report from the patient, an oral-motor examination, assessment of expressive and receptive language in spoken and written forms, and identification of facilitators and barriers to patient success. From this assessment, the SLP will determine type of aphasia and the patient's communicative strengths and weaknesses and how their diagnosis may impact their overall quality of life.
Apraxia of speech can be diagnosed by a speech language pathologist (SLP) through specific exams that measure oral mechanisms of speech. The oral mechanisms exam involves tasks such as pursing lips, blowing, licking lips, elevating the tongue, and also involves an examination of the mouth. A complete exam also involves observation of the patient eating and talking. SLPs do not agree on a specific set of characteristics that make up the apraxia of speech diagnosis, so any of the characteristics from the section above could be used to form a diagnosis. Patients may be asked to perform other daily tasks such as reading, writing, and conversing with others. In situations involving brain damage, an MRI brain scan also helps identify damaged areas of the brain.
A differential diagnosis must be used in order to rule out other similar or alternative disorders. Although disorders such as expressive aphasia, conduction aphasia, and dysarthria involve similar symptoms as apraxia of speech, the disorders must be distinguished in order to correctly treat the patients. While AOS involves the motor planning or processing stage of speech, aphasic disorders can involve other language processes.
According to Ziegler et al., this difficulty in diagnosis derives from the unknown causes and function of the disorder, making it hard to set definite parameters for AOS identification. Specifically, he explains that oral-facial apraxia, dysarthria, and aphasic phonological impairment are the three distinctly different disorders that cause individuals to display symptoms that are often similar to those of someone with AOS, and that these close relatives must be correctly ruled out by a Speech Language Pathologist before AOS can be given as a diagnosis. In this way, AOS is a diagnosis of exclusion, and is generally recognized when all other similar speech sound production disorders are eliminated.
According to the DSM-IV-TR, communication disorders are usually first diagnosed in childhood or adolescence though they are not limited as childhood disorders and may persist into adulthood. They may also occur with other disorders.
Diagnosis involves testing and evaluation during which it is determined if the scores/performance are "substantially below" developmental expectations and if they "significantly" interfere with academic achievement, social interactions and daily living. This assessment may also determine if the characteristic is deviant or delayed. Therefore, it may be possible for an individual to have communication challenges but not meet the criteria of being "substantially below" criteria of the DSM IV-TR.
It should also be noted that the DSM diagnoses do not comprise a complete list of all communication disorders, for example, auditory processing disorder is not classified under the DSM or ICD-10.
The following diagnoses are included in the communication disorders:
- Expressive language disorder – Characterized by difficulty expressing oneself beyond simple sentences and a limited vocabulary. An individual understands language better than their ability to use it; they may have a lot to say but have difficulties organizing and retrieving the words to get an idea across beyond what is expected for their developmental stage.
- Mixed receptive-expressive language disorder – problems comprehending the commands of others.
- Stuttering – a speech disorder characterized by a break in fluency, where sounds, syllables or words may be repeated or prolonged.
- Phonological disorder – a speech sound disorder characterized by problems in making patterns of sound errors, i.e. "dat" for "that".
- Communication disorder NOS (not otherwise specified) – the DSM-IV diagnosis in which disorders that do not meet the specific criteria for the disorder listed above may be classified.
In 2006, the U.S. Department of Education indicated that more than 1.4 million students were served in the public schools' special education programs under the speech or language impairment category of IDEA 2004. This estimate does not include children who have speech/language problems secondary to other conditions such as deafness; this means that if all cases of speech or language impairments were included in the estimates, this category of impairment would be the largest. Another source has estimated that communication disorders—a larger category, which also includes hearing disorders—affect one of every 10 people in the United States.
ASHA has cited that 24.1% of children in school in the fall of 2003 received services for speech or language disorders—this amounts to a total of 1,460,583 children between 3 –21 years of age. Again, this estimate does not include children who have speech/language problems secondary to other conditions. Additional ASHA prevalence figures have suggested the following:
- Stuttering affects approximately 4% to 5% of children between the ages of 2 and 4.
- ASHA has indicated that in 2006:
- Almost 69% of SLPs served individuals with fluency problems.
- Almost 29% of SLPs served individuals with voice or resonance disorders.
- Approximately 61% of speech-language pathologists in schools indicated that they served individuals with SLI
- Almost 91% of SLPs in schools indicated that they servedindividuals with phonological/articulation disorder
- Estimates for language difficulty in preschool children range from 2% to 19%.
- Specific Language Impairment (SLI) is extremely common in children, and affects about 7% of the childhood population.
The prognosis for individuals with apraxia varies. With therapy, some patients improve significantly, while others may show very little improvement. Some individuals with apraxia may benefit from the use of a communication aid.
However, many people with apraxia are no longer able to be independent. Those with limb-kinetic and/or gait apraxia should avoid activities in which they might injure themselves or others.
Occupational therapy, physical therapy, and play therapy may be considered as other references to support patients with apraxia. These team members could work along with the SLP to provide the best therapy for people with apraxia. However, because people with limb apraxia may have trouble directing their motor movements, occupational therapy for stroke or other brain injury can be difficult.
No medication has been shown useful for treating apraxia.
Treatment for aphasias is generally individualized, focusing on specific language and communication improvements, and regular exercise with communication tasks. Regular therapy for conduction aphasics has been shown to result in steady improvement on the Western Aphasia Battery. However, conduction aphasia is a mild aphasia, and conduction aphasics score highly on the WAB at baseline.
In cases of acute AOS (stroke), spontaneous recovery may occur, in which previous speech abilities reappear on their own. All other cases of acquired AOS require a form of therapy; however the therapy varies with the individual needs of the patient. Typically, treatment involves one-on-one therapy with a speech language pathologist (SLP). For severe forms of AOS, therapy may involve multiple sessions per week, which is reduced with speech improvement. Another main theme in AOS treatment is the use of repetition in order to achieve a large amount of target utterances, or desired speech usages.
There are various treatment techniques for AOS. One technique, called the Linguistic Approach, utilizes the rules for sounds and sequences. This approach focuses on the placement of the mouth in forming speech sounds. Another type of treatment is the Motor-Programming Approach, in which the motor movements necessary for speech are practiced. This technique utilizes a great amount of repetition in order to practice the sequences and transitions that are necessary in between production of sounds.
Research about the treatment of apraxia has revealed four main categories: articulatory-kinematic, rate/rhythm control, intersystemic facilitation/reorganization treatments, and alternative/augmentative communication.
- Articulatory-kinematic treatments almost always require verbal production in order to bring about improvement of speech. One common technique for this is modeling or repetition in order to establish the desired speech behavior. Articulatory-kinematic treatments are based on the importance of patients to improve spatial and temporal aspects of speech production.
- Rate and rhythm control treatments exist to improve errors in patients’ timing of speech, a common characteristic of Apraxia. These techniques often include an external source of control like metronomic pacing, for example, in repeated speech productions.
- Intersystemic reorganization/facilitation techniques often involve physical body or limb gestural approaches to improve speech. Gestures are usually combined with verbalization. It is thought that limb gestures may improve the organization of speech production.
- Finally, alternative and augmentative communication approaches to treatment of apraxia are highly individualized for each patient. However, they often involve a "comprehensive communication system" that may include "speech, a communication book aid, a spelling system, a drawing system, a gestural system, technologies, and informed speech partners".
One specific treatment method is referred to as PROMPT. This acronym stands for Prompts for Restructuring Oral Muscular Phonetic Targets, and takes a hands on multidimensional approach at treating speech production disorders. PROMPT therapists integrate physical-sensory, cognitive-linguistic, and social-emotional aspects of motor performance. The main focus is developing language interaction through this tactile-kinetic approach by using touch cues to facilitate the articulatory movements associated with individual phonemes, and eventually words.
One study describes the use of electropalatography (EPG) to treat a patient with severe acquired apraxia of speech. EPG is a computer-based tool for assessment and treatment of speech motor issues. The program allows patients to see the placement of articulators during speech production thus aiding them in attempting to correct errors. Originally after two years of speech therapy, the patient exhibited speech motor and production problems including problems with phonation, articulation, and resonance. This study showed that EPG therapy gave the patient valuable visual feedback to clarify speech movements that had been difficult for the patient to complete when given only auditory feedback.
While many studies are still exploring the various treatment methods, a few suggestions from ASHA for treating apraxia patients include the integration of objective treatment evidence, theoretical rationale, clinical knowledge and experience, and the needs and goals of the patient
In a typical 2-year-old child, about 50% of speech may be intelligible. A 4-year-old child's speech should be intelligible overall, and a 7-year-old should be able to clearly produce most words consistent with community norms for their age. Misarticulation of certain difficult sounds ("l", "r",
"s", "z", "th", "ch", "dzh", and "zh") may be normal up to 8 years. Children with speech sound disorder have pronunciation difficulties inappropriate for their age, and the difficulties are not caused by hearing problems, congenital deformities, motor disorders or selective mutism.
The DSM-5 diagnostic criteria are as follows:
- A. Persistent difficulty with speech sound production that interferes with speech intelligibility or prevents verbal communication of messages.
- B. The disturbance causes limitations in effective communication that interfere with social participation, academic achievement, or occupational performance, individually or in any combination.
- C. Onset of symptoms is in the early developmental period.
- D. The difficulties are not attributable to congenital or acquired conditions, such as cerebral palsy, cleft palate, deafness or hearing loss, traumatic brain injury, or other medical or neurological conditions.
For most children, the disorder is not lifelong and speech difficulties improve with time and speech-language treatment. Prognosis is poorer for children who also have a language disorder, as that may be indicative of a learning disorder.
What follows are a list of frequently used measures of speech and language skills, and the age-ranges for which they are appropriate.
- Clinical Evaluation of Language Fundamentals – Preschool (3–6 years)
- Clinical Evaluation of Language Fundamentals (6–21 years)
- MacArthur Communicative Development Inventories (0–12 months)
- The Rossetti Infant-Toddler Language Scale (0–36 months)
- Preschool Language Scale (0–6 years)
- Expressive One-word Picture Vocabulary Test (2–15 years)
- Bankson-Bernthal Phonological Process Survey Test (2–16 years)
- Goldman-Fristoe Test of Articulation 2 (2–21 years)
- Peabody Picture Vocabulary Test (2.5–40 years)
Disorders and tendencies included and excluded under the category of communication disorders may vary by source. For example, the definitions offered by the American Speech–Language–Hearing Association differ from that of the Diagnostic Statistical Manual 4th edition (DSM-IV).
Gleanson (2001) defines a communication disorder as a speech and language disorder which refers to problems in communication and in related areas such as oral motor function. The delays and disorders can range from simple sound substitution to the inability to understand or use their native language.
In general, communications disorders commonly refer to problems in speech (comprehension and/or expression) that significantly interfere with an individual’s achievement and/or quality of life. Knowing the operational definition of the agency performing an assessment or giving a diagnosis may help.
Persons who speak more than one language or are considered to have an accent in their location of residence do not have speech disorders if they are speaking in a manner consistent with their home environment or a blending of their home and foreign environment.
Errors produced by children with speech sound disorders are typically classified into four categories:
- Omissions: Certain sounds are not produced — entire syllables or classes of sounds may be deleted; e.g., fi' for fish or 'at for cat.
- Additions (or Epentheses/Commissions): an extra sound or sounds are added to the intended word; e.g. puh-lane for plane.
- Distortions: Sounds are changed slightly so that the intended sound may be recognized but sounds "wrong," or may not sound like any sound in the language.
- Substitutions: One or more sounds are substituted for another; e.g., wabbit for rabbit or tow for cow.
Sometimes, even for experts, telling exactly which type has been made is not obvious — some distorted forms of /r/ may be mistaken for /w/ by a casual observer, yet may not actually be either sound but somewhere in between. Further, children with severe speech sound disorders may be difficult to understand, making it hard to tell what word was actually intended and thus what is actually wrong with it. Some terms can be used to describe more than one of the above categories, such as lisp, which is often the replacement of /s/ with /th/ (a substitution), but can be a distortion, producing /s/ just behind the teeth resulting in a sound somewhere between /s/ and /th/.
There are three different levels of classification when determining the magnitude and type of an error that is produced:
1. Sounds the patient can produce
1. A: Phonemic- can be produced easily; used meaningfully and contrastively
2. B: Phonetic- produced only upon request; not used consistently, meaningfully, or contrastively; not used in connected speech
2. Stimulable sounds
1. A: Easily stimulable
2. B: Stimulable after demonstration and probing (i.e. with a tongue depressor)
3. Cannot produce the sound
1. A: Cannot be produced voluntarily
2. B: No production ever observed
Note that omissions do not mean the sound cannot be produced, and some sounds may be produced more easily or frequently when appearing with certain other sounds: someone might be able to say "s" and "t" separately, but not "st," or may be able to produce a sound at the beginning of a word but not at the end. The magnitude of the problem will often vary between different sounds from the same speaker.
In relation to other types of aphasia, TMoA occurs less frequently, so there is less information on its prognosis. In general, for individuals with aphasia, most recovery is seen within 6 months of the stroke or injury although more recovery may continue in the following months or years. The timeline of recovery may look different depending on the type of stroke that caused the aphasia. With an ischemic stroke, recovery is greatest within the first two weeks and then diminishes overtime until the progress stabilizes. With a hemorrhagic stroke, the patient often shows little improvement in the first few weeks and then has relatively rapid recovery until they stabilize.
In a study involving eight patients with border zone lesions, all patients presented with transcortical mixed aphasia initially after the stroke. Three of these patients made a complete recovery within a few days post-stroke. For three other patients with more anterior lesions, their aphasia transitioned to TMoA. All participants in the study regained full language abilities within 18 months following their stroke. This suggests a positive long-term prognosis for patients with TMoA. However, this might not be the case for all patients and more research is needed in order to solidify these findings. Another study found that prognosis of TMoA is affected by lesion size. Smaller lesions typically cause delays in speech initiation; whereas, larger lesions lead to more profound language abnormalities and difficulty with abstract language abilities.
Research has shown that treatment has a direct effect on aphasia outcomes. Intensity, duration and timing of treatment all need to be taken in to consideration when choosing a course of treatment and determining a prognosis. In general, greater intensity leads to greater improvement. For duration, longer-term treatment produces more permanent changes. As for timing, beginning treatment too early may be difficult for the system which has not recovered enough to do intensive therapy, but beginning too late may result missing the window of the opportunity in which the most change can occur. Neuroplasticity, the brain's natural ability to reorganize itself following a traumatic event, occurs best when treatment connects simultaneous events, maintains attention, taps into positive emotion, utilizes repetition tasks, and is specific to the individual's needs.
Other factors affecting prognosis includes location and site of lesion. Since the lesion that results in TMoA usually occurs in the watershed area and does not directly involve the areas of the brain responsible for general language abilities, prognosis for these patients is good overall. Other factors that determine a patient’s prognosis include age, education prior to the stroke, gender, motivation, and support.
Following are some precautions that should be taken to avoid aphasia, by decreasing the risk of stroke, the main cause of aphasia:
- Exercising regularly
- Eating a healthy diet
- Keeping alcohol consumption low and avoiding tobacco use
- Controlling blood pressure
Expressive language disorder is a communication disorder in which there are difficulties with verbal and written expression. It is a specific language impairment characterized by an ability to use expressive spoken language that is markedly below the appropriate level for the mental age, but with a language comprehension that is within normal limits. There can be problems with vocabulary, producing complex sentences, and remembering words, and there may or may not be abnormalities in articulation.
As well as present speech production, very often, someone will have difficulty remembering things. This memory problem is only disturbing for speech; non-verbal or non-linguistically based memory will be unimpaired. An example of a child with expressive language disorder can be seen here.
Expressive language disorder affects work and schooling in many ways. It is usually treated by specific speech therapy, and usually cannot be expected to go away on its own.
Expressive language disorder can be further classified into two groups: developmental expressive language disorder and acquired expressive language disorder. Developmental expressive language disorder currently has no known cause, is first observed when a child is learning to talk, is more common in boys than girls, and is much more common than the acquired form of the disorder. Acquired expressive language disorder is caused by specific damage to the brain by a stroke, traumatic brain injury, or seizures.
Care must be taken to distinguish expressive language disorder from other communication disorders, sensory-motor disturbances, intellectual disability and/or environmental deprivation (see DSM-IV-TR criterion D). These factors affect a person's speech and writing to certain predictable extents, and with certain differences.
Careful diagnosis is also important because "atypical language development can be a secondary characteristic of other physical and developmental problems that may first manifest as language problems".
Language disorders or language impairments are disorders that involve the processing of linguistic information. Problems that may be experienced can involve grammar (syntax and/or morphology), semantics (meaning), or other aspects of language. These problems may be receptive (involving impaired language comprehension), expressive (involving language production), or a combination of both. Examples include specific language impairment and aphasia, among others. Language disorders can affect both spoken and written language, and can also affect sign language; typically, all forms of language will be impaired.
Current data indicates that 7% of young children display language disorder, with boys being diagnosed twice as much as girls.
Preliminary research on potential risk factors have suggested biological components, such as low-birth weight, prematurity, general birth complications, and male gender, as well as family history and low parental education can increase the chance of developing language disorders.
For children with phonological and expressive language difficulties, there is evidence supporting speech and language therapy. However, the same therapy is shown to be much less effective for receptive language difficulties. These results are consistent with the poorer prognosis for receptive language impairments that are generally accompanied with problems in reading comprehension.
Note that these are distinct from speech disorders, which involve difficulty with the act of speech production, but not with language.
Language disorders tend to manifest in two different ways: receptive language disorders (where one cannot properly comprehend language) and expressive language disorders (where one cannot properly communicate their intended message).
The U.S. Food and Drug Administration (FDA) has not approved any drug for the direct treatment of stuttering. However, the effectiveness of pharmacological agents, such as benzodiazepines, anticonvulsants, antidepressants, antipsychotic and antihypertensive medications, and dopamine antagonists in the treatment of stuttering has been evaluated in studies involving both adults and children.
A comprehensive review of pharmacological treatments of stuttering in 2006 concluded that few of the drug trials were methodologically sound. Of those that were, only one, not unflawed study, showed a reduction in the frequency of stuttering to less than 5% of words spoken. In addition, potentially serious side effects of pharmacological treatments were noted, such as weight gain, sexual dysfunctions and the potential for blood pressure increases. There is one new drug studied especially for stuttering named pagoclone, which was found to be well-tolerated "with only minor side-effects of headache and fatigue reported in a minority of those treated".
Before beginning treatment, an assessment is needed, as diagnosing stuttering requires the skills of a certified speech-language pathologist (SLP).
While there is no complete cure for stuttering, several treatment options exist that help individuals to better control their speech. Many of the available treatments focus on learning strategies to minimize stuttering through speed reduction, breathing regulation, and gradual progression from single-syllable responses to longer words, and eventually more complex sentences. Furthermore, some stuttering therapies help to address the anxiety that is often elicited as a result of stuttering, and consequently exacerbates stuttering symptoms. This method of treatment is referred to as a comprehensive approach, in which the main emphasis of treatment is directed toward improving the speaker's attitudes toward communication and minimizing the negative impact stuttering can have on the speaker's life. Treatment from a qualified S-LP can benefit people who stutter of any age.
Speech language pathologists teach people who stutter to control and monitor the rate at which they speak. In addition, people may learn to start saying words in a slightly slower and less physically tense manner. They may also learn to control or monitor their breathing. When learning to control speech rate, people often begin by practising smooth, fluent speech at rates that are much slower than typical speech, using short phrases and sentences. Over time, people learn to produce smooth speech at faster rates, in longer sentences, and in more challenging situations until speech sounds both fluent and natural. When treating stuttering in children, some researchers recommend that an evaluation be conducted every three months in order to determine whether or not the selected treatment option is working effectively. "Follow-up" or "maintenance" sessions are often necessary after completion of formal intervention to prevent relapse.
Receptive language disorders can be acquired or developmental (most often the latter). When developmental, difficulties in spoken language tend to occur before three years of age. Usually such disorders are accompanied by expressive language disorders.
However, unique symptoms and signs of a receptive language disorder include: struggling to understand meanings of words and sentences, struggling to put words in proper order, and inability to follow verbal instruction.
Treatment options include: language therapy, special education classes for children at school, and a psychologist if accompanying behavioral problems are present.
Currently, there is no standard treatment for expressive aphasia. Most aphasia treatment is individualized based on a patient's condition and needs as assessed by a speech language pathologist. Patients go through a period of spontaneous recovery following brain injury in which they regain a great deal of language function.
In the months following injury or stroke, most patients receive traditional treatment for a few hours per day. Among other exercises, patients practice the repetition of words and phrases. Mechanisms are also taught in traditional treatment to compensate for lost language function such as drawing and using phrases that are easier to pronounce.
Emphasis is placed on establishing a basis for communication with family and caregivers in everyday life. Treatment is individualized based on the patient's own priorities, along with the family's input.
A patient may have the option of individual or group treatment. Although less common, group treatment has been shown to have advantageous outcomes. Some types of group treatments include family counseling, maintenance groups, support groups and treatment groups.
An expressive language disability or delay in kindergarten age children is classified as a Communication Disability/Delay under a Code 30. If there is no marked improvement in the child's ability to express themselves verbally once the student enters Grade 1, a child can be given a Code 57 for a Communication Disability. This diagnosis must be given from a Speech-Language Pathologist in order for the child to receive continued special education funding.