Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The standard diagnostic workup of suspected kidney disease is history & examination, as well as a urine test strip. Also, renal ultrasonography is essential in the diagnosis and management of kidney-related diseases.
The diagnosis can be confirmed on a blood sample using a genetic test.
Guidelines for referral to a nephrologist vary between countries. Though most would agree that nephrology referral is required by Stage 4 CKD (when eGFR/1.73m is less than 30 ml/min; or decreasing by more than 3 ml/min/year); and may be useful at an earlier stage (e.g. CKD3) when urine albumin-to-creatinine ratio is more than 30 mg/mmol, when blood pressure is difficult to control, or when hematuria or other findings suggest either a primarily glomerular disorder or secondary disease amenable to specific treatment. Other benefits of early nephrology referral include proper patient education regarding options for renal replacement therapy as well as pre-emptive transplantation, and timely workup and placement of an arteriovenous fistula in those patients opting for future hemodialysis
Over time, kidney failure can develop and most men with the disease will eventually require dialysis or kidney transplantation. For reasons which are not understood, women with the disease, although they often have blood in their urine, only rarely develop kidney failure. The disease has been shown to recur following kidney transplantation, however in most cases the kidney transplant has a normal lifespan.
Screening those who have neither symptoms nor risk factors for CKD is not recommended. Those who should be screened include: those with hypertension or history of cardiovascular disease, those with diabetes or marked obesity, those aged > 60 years, subjects with indigenous racial origin, those with a history of kidney disease in the past and subjects who have relatives who had kidney disease requiring dialysis. Screening should include calculation of estimated GFR from the serum creatinine level, and measurement of urine albumin-to-creatinine ratio (ACR) in a first-morning urine specimen (this reflects the amount of a protein called albumin in the urine), as well as a urine dipstick screen for hematuria. The GFR (glomerular filtration rate) is derived from the serum creatinine and is proportional to 1/creatinine, i.e. it is a reciprocal relationship (the higher the creatinine, the lower the GFR). It reflects one aspect of kidney function: how efficiently the glomeruli (filtering units) work. But as they make up <5% of the mass of the kidney, the GFR does not indicate all aspects of kidney health and function. This can be done by combining the GFR level with the clinical assessment of the patient (especially fluid state) and measuring the levels of hemoglobin, potassium, phosphate and parathyroid hormone (PTH). Normal GFR is 90-120 mLs/min. The units of creatinine vary from country to country.
For an adult patient with isolated hematuria, tests such as ultrasound of the kidney and cystoscopy are usually done first to pinpoint the source of the bleeding. These tests would rule out kidney stones and bladder cancer, two other common urological causes of hematuria. In children and younger adults, the history and association with respiratory infection can raise the suspicion of IgA nephropathy. A kidney biopsy is necessary to confirm the diagnosis. The biopsy specimen shows proliferation of the mesangium, with IgA deposits on immunofluorescence and electron microscopy. However, patients with isolated microscopic hematuria (i.e. without associated proteinuria and with normal kidney function) are not usually biopsied since this is associated with an excellent prognosis. A urinalysis will show red blood cells, usually as red cell urinary casts. Proteinuria, usually less than 2 grams per day, also may be present. Other renal causes of isolated hematuria include thin basement membrane disease and Alport syndrome, the latter being a hereditary disease associated with hearing impairment and eye problems.
Other blood tests done to aid in the diagnosis include CRP or ESR, complement levels, ANA, and LDH. Protein electrophoresis and immunoglobulin levels can show increased IgA in 50% of all patients.
The diagnosis of medullary cystic kidney disease can be done via a physical exam. Further tests/exams are as follows:
- A routine blood test called the serum creatinine can be done. Creatinine is a breakdown product from the muscle, as kidney function declines, the amount of blood creatinine goes up. Thus, most affected individuals have no symptoms of MCKD, but find that they have the condition due to an elevation in the blood creatinine level.
- Affected individuals also have an elevation in the blood uric acid level. In MCKD, the kidney has difficulty getting rid of uric acid. One can find out that the uric acid level in the blood is high when a blood test is done. Gout is caused by high uric acid levels, and thus patients often have gout.
- A kidney ultrasound in this condition usually shows normal or small sized kidneys (occasionally cysts are present). However, since cysts are present in many normal individuals, these cysts are not helpful in making a diagnosis, therefore a kidney biopsy can be done to determine if the individual has this disease. Kidney biopsy is a procedure where a needle is inserted into the kidney and removes a small piece of kidney tissue. This tissue is then examined under a microscope.
- Definitive testing and diagnosis of MCKD can be made by analyzing the UMOD gene for mutations, this can be done by a blood test.
Diagnosis is traditionally based on the clinical findings above in combination with excessive analgesic use. It is estimated that between 2 and 3 kg each of phenacetin or aspirin must be consumed before evidence of analgesic nephropathy becomes clinically apparent.
Once suspected, analgesic nephropathy can be confirmed with relative accuracy using computed tomography (CT) imaging without contrast. One trial demonstrated that the appearance of papillary calcifications on CT imaging was 92% sensitive and 100% specific for the diagnosis of analgesic nephropathy.
Complications of analgesic nephropathy include pyelonephritis and end-stage kidney disease. Risk factors for poor prognosis include recurrent urinary tract infection and persistently elevated blood pressure. Analgesic nephropathy also appears to increase the risk of developing cancers of the urinary system.
Increasing access to, and use of, genome profiling may provide opportunity for diagnosis based on presentation and genetic risk factors, by identifying ApoL1 gene variants on chromosome 22.
Nephrotoxicity is usually monitored through a simple blood test. A decreased creatinine clearance indicates poor renal function. Normal creatinine level is between 80 - 120 μmol/L. In interventional radiology, a patient's creatinine clearance levels are all checked prior to a procedure.
Serum creatinine is another measure of renal function, which may be more useful clinically when dealing with patients with early kidney disease.
It is possible to analyze urine samples in determining albumin, hemoglobin and myoglobin with an optimized MEKC method.
Millions of people across the world suffer from kidney disease. Of those millions, several thousand will eventually or do need kidney transplants. Out of those millions in the world, 16,500 in the United States needed a kidney transplant in 2008. Of those 16,500 people, 5,000 died while waiting for a transplant. Currently, there is a shortage of donors, and in 2007 there were only 64,606 kidney transplants in the world. This shortage of donors is causing countries to place monetary value on kidneys. Countries such as Iran and Singapore are eliminating their lists by paying their citizens to donate. Also, the black market accounts for 5-10 percent of transplants that occur worldwide. The act of buying an organ through the black market is illegal in the United States. To be put on the waiting list for a kidney transplant, patients must first be referred by a physician, then they must choose and contact a donor hospital. Once they choose a donor hospital, patients must then receive an evaluation to make sure they are sustainable to receive a transplant. In order to be a match for a kidney transplant, patients must match blood type and human leukocyte antigen factors with their donors. They must also have no reactions to the antibodies from the donor’s kidneys.
The definitive diagnosis of HN requires morphological examination. Common histological features can be identified in the renal and glomerular vasculature. Glomerulosclerosis is often present, either focally or globally, which is characterized by hardening of the vessel walls. Also, luminal narrowing or the arteries and arterioles of the kidney system. However, this type of procedure is likely to be preceded with a provisional diagnosis based on laboratory investigations.
Male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidemia, older age, familial disease and elevated creatinine concentrations are markers of a poor outcome. Frank hematuria has shown discordant results with most studies showing a better prognosis, perhaps related to the early diagnosis, except for one group which reported a poorer prognosis. Proteinuria and hypertension are the most powerful prognostic factors in this group.
There are certain other features on kidney biopsy such as interstitial scarring which are associated with a poor prognosis. ACE gene polymorphism has been recently shown to have an impact with the DD genotype associated more commonly with progression to kidney failure.
Conventionally, proteinuria is diagnosed by a simple dipstick test, although it is possible for the test to give a false negative reading, even with nephrotic range proteinuria if the urine is dilute. False negatives may also occur if the protein in the urine is composed mainly of globulins or Bence Jones proteins because the reagent on the test strips, bromophenol blue, is highly specific for albumin. Traditionally, dipstick protein tests would be quantified by measuring the total quantity of protein in a 24-hour urine collection test, and abnormal globulins by specific requests for protein electrophoresis. Trace results may be produced in response to excretion of Tamm–Horsfall mucoprotein.
More recently developed technology detects human serum albumin (HSA) through the use of liquid crystals (LCs). The presence of HSA molecules disrupts the LCs supported on the AHSA-decorated slides thereby producing bright optical signals which are easily distinguishable. Using this assay, concentrations of HSA as low as 15 µg/mL can be detected.
Alternatively, the concentration of protein in the urine may be compared to the creatinine level in a spot urine sample. This is termed the protein/creatinine ratio. The 2005 UK Chronic Kidney Disease guidelines states protein/creatinine ratio is a better test than 24-hour urinary protein measurement. Proteinuria is defined as a protein/creatinine ratio greater than 45 mg/mmol (which is equivalent to albumin/creatinine ratio of greater than 30 mg/mmol or approximately 300 mg/g) with very high levels of proteinuria having a ratio greater than 100 mg/mmol.
Protein dipstick measurements should not be confused with the amount of protein detected on a test for microalbuminuria which denotes values for protein for urine in mg/day versus urine protein dipstick values which denote values for protein in mg/dL. That is, there is a basal level of proteinuria that can occur below 30 mg/day which is considered non-pathology. Values between 30–300 mg/day are termed microalbuminuria which is considered pathologic. Urine protein lab values for microalbumin of >30 mg/day correspond to a detection level within the "trace" to "1+" range of a urine dipstick protein assay. Therefore, positive indication of any protein detected on a urine dipstick assay obviates any need to perform a urine microalbumin test as the upper limit for microalbuminuria has already been exceeded.
Some forms of glomerulonephritis are diagnosed clinically, based on findings on history and examination. Other tests may include:
- Urine examination
- Blood tests investigating the cause, including FBC, inflammatory markers and special tests including (ASLO, ANCA, Anti-GBM, Complement levels, Antinuclear antibodies
- Biopsy of the kidney
- Renal ultrasonography is useful for prognostic purposes in finding signs of chronic kidney disease, which however may be caused by many other diseases than glomerulonephritis.
In terms of treatment/management for medullary cystic kidney disease, at present there are no specific therapies for this disease, and there are no specific diets known to slow progression of the disease. However, management for the symptoms can be dealt with as follows: erythropoietin is used to treat anemia, and growth hormone is used when growth becomes an issue. Additionally, a renal transplant may be needed at some point.
Finally, foods that contain potassium and phosphate must be reduced
Patients at risk for acute uric acid nephropathy can be given allopurinol or rasburicase (a recombinant urate oxidase) prior to treatment with cytotoxic drugs.
The osmolality of the contrast agent was previously believed to be an important factor in contrast-induced nephropathy. Today it has become increasingly clear that other physicochemical properties play a greater role, such as viscosity. Attention should be paid to using contrast agents of low viscosity. Moreover, sufficient fluids should be supplied to limit fluid viscosity of urine. Modern iodinated contrast agents are non-ionic, the older ionic types caused more adverse effects, and their use has diminished.
Most patients with thin basement membrane disease need only reassurance. Indeed, this disease was previously referred to as "benign familial hematuria" because of its usually benign course. Angiotensin converting enzyme inhibitors have been suggested to reduce the episodes of hematuria, though controlled studies are lacking. Treating co-existing hypercalciuria and hyperuricosuria will also be helpful in reducing hematuria.
The molecular basis for thin basement membrane disease has yet to be elucidated fully; however, defects in the gene encoding the a4 chain of type IV collagen have been reported in some families.
To minimize the risk for contrast-induced nephropathy, various actions can be taken if the patient has predisposing conditions. These have been reviewed in a meta-analysis. A separate meta-analysis addresses interventions for emergency patients with baseline insufficient kidney function.
Individuals with chronic kidney disease, diabetes mellitus, high blood pressure, reduced intravascular volume, or who are elderly are at increased risk of developing CIN after exposure to iodinated contrast.
A clinical prediction rule is available to estimate probability of nephropathy (increase ≥25% and/or ≥0.5 mg/dl in serum creatinine at 48 h):
Risk Factors:
- Systolic blood pressure <80 mm Hg - 5 points
- Intraarterial balloon pump - 5 points
- Congestive heart failure (Class III-IV or history of pulmonary edema) - 5 points
- Age >75 y - 4 points
- Hematocrit level <39% for men and <35% for women - 3 points
- Diabetes mellitus- 3 points
- Contrast media volume - 1 point for each 100 mL
- Decreased kidney function:
- Serum creatinine level >1.5 g/dL - 4 points
- Estimated Glomerular filtration rate (online calculator)
Scoring:
5 or less points
- Risk of CIN - 7.5
- Risk of Dialysis - 0.04%
6–10 points
- Risk of CIN - 14.0
- Risk of Dialysis - 0.12%
11–16 points
- Risk of CIN - 26.1*
- Risk of Dialysis - 1.09%
>16 points
- Risk of CIN - 57.3
- Risk of Dialysis - 12.8%
Recently published evidence suggest heat stress and strenuous activity-induced cyclic uricosuria and crystalluria as a possible mechanism for the tubular lesion.
The cause of DEFN is not certain, although chronic exposure to dietary aristolochic acid has been identified as a major risk factor for DEFN and other, related disorders.
In the Balkan region, dietary aristolochic acid exposure may come from the consumption of the seeds of "Aristolochia clematitis" (European birthwort), a plant native to the endemic region, which are thought to comingle with the wheat used for bread. This theory has recently been further supported by the research of cancer biologist Arthur P. Grollman, director of the chemical biology lab at Stony Brook University in New York, and his colleague Bojan Jelaković, an associate professor at the Zagreb University School of Medicine. Aristolochic-acid-containing herbal remedies used in traditional Chinese medicine are associated with a related—possibly identical—condition known as "Chinese herbs nephropathy". Exposure to aristolochic acid is associated with a high incidence of uroepithelial tumorigenesis.
It is diagnosed by micturating cystography; scarring can be demonstrated by ultrasound or DMSA.