Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Phase contrast-MRI is an imaging method which is more sensitive than MRI for analysis of the pulsatile CSF flow in the ventricular system. This method takes multiple images of the ventricles within one cardiac cycle to measure the flow of CSF running past the area of acquisition. If no flow is seen, this is a reliable diagnosis of aqueductal stenosis as it implies that there is a blockage of CSF.
Ultrasonography can be used in utero to diagnose aqueductal stenosis by showing dilation of the lateral and third ventricles. A retrospective study found that diagnosis can be made as early as 19 weeks of gestation, and that on average diagnosis is made at 33 weeks. Unfortunately, prenatal diagnosis still has a poor prognosis even with immediate treatment upon birth.
MRI is considered the best method of detecting aqueductal stensosis because it can visualize the entire length of the aqueduct, can clearly depict tumors, and can show ventricle enlargement or other deformations. It is helpful in determining the extent of the aqueductal obstruction, particularly when multiple masses or lesions are present, and thereby aids in determining the most appropriate treatment method (i.e. surgery, shunt, or ETV). When constructive interference in steady state (CISS) or fast imaging employing steady-state acquisition (FIESTA) sequence are used, subtle abnormalities or partial obstructions in the aqueduct can be depicted in the MRI. For example, CISS can be used to determine if a thin membrane interfering with CSF flow is present.
Vessel restenosis is typically detected by angiography, but can also be detected by duplex ultrasound and other imaging techniques.
Examples of possible complications include shunt malfunction, shunt failure, and shunt infection, along with infection of the shunt tract following surgery (the most common reason for shunt failure is infection of the shunt tract). Although a shunt generally works well, it may stop working if it disconnects, becomes blocked (clogged), infected, or it is outgrown. If this happens the cerebrospinal fluid will begin to accumulate again and a number of physical symptoms will develop (headaches, nausea, vomiting, photophobia/light sensitivity), some extremely serious, like seizures. The shunt failure rate is also relatively high (of the 40,000 surgeries performed annually to treat hydrocephalus, only 30% are a patient's first surgery) and it is not uncommon for patients to have multiple shunt revisions within their lifetime.
Another complication can occur when CSF drains more rapidly than it is produced by the choroid plexus, causing symptoms - listlessness, severe headaches, irritability, light sensitivity, auditory hyperesthesia (sound sensitivity), nausea, vomiting, dizziness, vertigo, migraines, seizures, a change in personality, weakness in the arms or legs, strabismus, and double vision - to appear when the patient is vertical. If the patient lies down, the symptoms usually vanish quickly. A CT scan may or may not show any change in ventricle size, particularly if the patient has a history of slit-like ventricles. Difficulty in diagnosing overdrainage can make treatment of this complication particularly frustrating for patients and their families. Resistance to traditional analgesic pharmacological therapy may also be a sign of shunt overdrainage "or" failure.
The diagnosis of cerebrospinal fluid buildup is complex and requires specialist expertise. Diagnosis of the particular complication usually depends on when the symptoms appear - that is, whether symptoms occur when the patient is upright or in a prone position, with the head at roughly the same level as the feet.
Hydrocephalus can be successfully treated by placing a drainage tube (shunt) between the brain ventricles and abdominal cavity. There is some risk of infection being introduced into the brain through these shunts, however, and the shunts must be replaced as the person grows. A subarachnoid hemorrhage may block the return of CSF to the circulation.
This should be distinguished from external hydrocephalus. This is a condition generally seen in infants and involving enlarged fluid spaces or subarachnoid spaces around the outside of the brain. This is generally a benign condition that resolves spontaneously by 2 years of age. (Greenberg, Handbook of Neurosurgery, 5th Edition, pg 174). Imaging studies and a good medical history can help to differentiate external hydrocephalus from subdural hemorrhages or symptomatic chronic extra-axial fluid collections which are accompanied by vomiting, headaches and seizures.
Hydrocephalus treatment is surgical, creating a way for the excess fluid to drain away. In the short term, an external ventricular drain (EVD), also known as an extraventricular drain or ventriculostomy, provides relief. In the long term, some patients will need any of various types of cerebral shunt. It involves the placement of a ventricular catheter (a tube made of silastic) into the cerebral ventricles to bypass the flow obstruction/malfunctioning arachnoidal granulations and drain the excess fluid into other body cavities, from where it can be resorbed. Most shunts drain the fluid into the peritoneal cavity (ventriculo-peritoneal shunt), but alternative sites include the right atrium (ventriculo-atrial shunt), pleural cavity (ventriculo-pleural shunt), and gallbladder. A shunt system can also be placed in the lumbar space of the spine and have the CSF redirected to the peritoneal cavity (Lumbar-peritoneal shunt). An alternative treatment for obstructive hydrocephalus in selected patients is the endoscopic third ventriculostomy (ETV), whereby a surgically created opening in the floor of the third ventricle allows the CSF to flow directly to the basal cisterns, thereby shortcutting any obstruction, as in aqueductal stenosis. This may or may not be appropriate based on individual anatomy. For infants, ETV is sometimes combined with choroid plexus cauterization, which reduces the amount of cerebrospinal fluid produced by the brain. The technique, known as ETV/CPC was pioneered in Uganda by neurosurgeon Ben Warf and is now in use in several U.S. hospitals.
Unfortunately, coarctations can not be prevented because they are usually present at birth. The best thing for patients who are affected by coarctations is early detection. Some signs that can lead to a coarctation have been linked to pathologies such as Turner syndrome, bicuspid aortic valve, and other family heart conditions.
A chest radiogram can be given to a patient to determine:
- Pulmonary plethora: the test will help to determine if there is a left-to-right shunt meaning the blood is flowing from the left atrium to the right through a hole between the two atria.
- Mild left atrial enlargement: the test will help to determine if the left atrium is enlarged due to alternate blood flows
- Right ventricular enlargement: the test will help to determine if the ventricle is enlarged due to a surge of blood above normal or if the ventricle is having to work harder than normal to pump blood out of the ventricle.
- Pulmonary artery enlargement: the test will help to determine if there is a large volume of blood in the pulmonary veins and arteries than normal
- Mitral Valve calcification late in life: the test will help to determine if the mitral valve or flaps are becoming hardened and losing their floppiness.
- pulmonary vascular congestion, marked left atrial enlargement: the test will help to determine if there is a sign of MS and small ASD and how severe both are.
In boys, history and physical exam is adequate to make the diagnosis. In girls, VCUG (voiding cystourethrogram) is usually diagnostic. Other tests may include:
- Urine analysis
- Urine culture
- CBC, basic metabolic panel
- Renal and bladder ultrasound
A chest x-ray will be given to determine the size of the heart and the blood vessels supplying blood to the lungs.
Diagnosis is via a careful history and physical examination, often supplemented by radiographic imaging studies. Pyloric stenosis should be suspected in any young infant with severe vomiting. On physical exam, palpation of the abdomen may reveal a mass in the epigastrium. This mass, which consists of the enlarged pylorus, is referred to as the 'olive', and is sometimes evident after the infant is given formula to drink. Rarely, there are peristaltic waves that may be felt or seen (video on NEJM) due to the stomach trying to force its contents past the narrowed pyloric outlet.
Most cases of pyloric stenosis are diagnosed/confirmed with ultrasound, if available, showing the thickened pylorus and non-passage of gastric contents into the proximal duodenum. Muscle wall thickness 3 millimeters (mm) or greater and pyloric channel length of 15 mm or greater are considered abnormal in infants younger than 30 days.
Although somewhat less useful, an upper GI series (x-rays taken after the baby drinks a special contrast agent) can be diagnostic by showing the narrowed pyloric outlet filled with a thin stream of contrast material; a "string sign" or the "railroad track sign". For either type of study, there are specific measurement criteria used to identify the abnormal results. Plain x-rays of the abdomen sometimes shows a dilated stomach.
Although UGI endoscopy would demonstrate pyloric obstruction, physicians would find it difficult to differentiate accurately between hypertrophic pyloric stenosis and pylorospasm.
Blood tests will reveal low blood levels of potassium and chloride in association with an increased blood pH and high blood bicarbonate level due to loss of stomach acid (which contains hydrochloric acid) from persistent vomiting. There will be exchange of extracellular potassium with intracellular hydrogen ions in an attempt to correct the pH imbalance. These findings can be seen with severe vomiting from any cause.
In peripheral procedures, rates are still high. A 2003 study of selective and systematic stenting for limb-threatening ischemia reported restenosis rates at 1 year follow-up in 32.3% of selective stenting patients and 34.7% of systematic stenting patients.
The 2006 SIROCCO trial compared the sirolimus drug-eluting stent with a bare nitinol stent for atherosclerotic lesions of the superficial femoral artery, reporting restenosis at 2 year follow-up was 22.9% and 21.1%, respectively.
A 2009 study compared bare nitinol stents with percutaneous transluminal angioplasty (PTA) in superficial femoral artery disease. At 1 year follow-up, restenosis was reported in 34.4% of stented patients versus 61.1% of PTA patients.
When treated early, that is, before the onset of pulmonary hypertension, a good outcome is possible in patients with Shone’s syndrome. However, other surgical methods can be employed depending upon the patient’s medical background. The single most important determinant of poor outcome during the surgical management of patients with Shone's syndrome is the degree of involvement of the mitral valve and the presence of secondary pulmonary hypertension.
MR Imaging is best suited to evaluate patients with Shone's complex. Routine blood tests should be done prior to cardiac catheterization. The surgeons will repair the mitral valve and al the partial surgical removal of supramitral ring is done. This surgical method is preferred to the valve replacement procedure.
Classifying cardiac lesions in infants is quite difficult, and accurate diagnosis is essential. The diagnosis of Shone’s complex requires an ultrasound of the heart (echocardiogram) and a cardiac catheterization procedure, that is, insertion of a device through blood vessels in the groin to the heart that helps identify heart anatomy.
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.
In females, meatal stenosis can usually be treated in the physician's office using local anesthesia to numb the area and dilating (widening) the urethral opening with special instruments.
In boys, it is treated by a second surgical procedure called meatotomy in which the meatus is crushed with a straight mosquito hemostat and then divided with fine-tipped scissors. Recently, home-dilatation has been shown to be a successful treatment for most boys.
The diagnosis of pulmonary valve stenosis can be achieved via echocardiogram, as well as a variety of other means among them are: ultrasound, in which images of the heart chambers in utero where the tricuspid valve has thickening (or due to Fallot's tetralogy, Noonan's syndrome, and other congenital defects) and in infancy auscultation of the heart can reveal identification of a murmur.
Some other conditions to contemplate (in diagnosis of pulmonic valvular stenosis) are the following:
- Infundibular stenosis
- Supravalvular pulmonary stenosis
- Dysplastic pulmonic valve stenosis
Leaving the hospital after a coarctation procedure is only one step in a lifelong process. Just because the coarctation was fixed does not mean that the patient is cured. It is extremely important to visit the cardiologist on a regular basis. Depending on the severity of the patient's condition, which is evaluated on a case-by-case level, visiting a cardiologist can be a once a year surveillance check up. Keeping a regular schedule of appointments with a cardiologist after a coarctation procedure is complete helps increase the chances of survivability for the patients.
Heyde's syndrome is now known to be gastrointestinal bleeding from angiodysplasic lesions due to acquired vWD-2A deficiency secondary to aortic stenosis, and the diagnosis is made by confirming the presence of those three things. Gastrointestinal bleeding may present as bloody vomit, dark, tarry stool from metabolized blood, or fresh blood in the stool. In a person presenting with these symptoms, endoscopy, gastroscopy, and/or colonoscopy should be performed to confirm the presence of angiodysplasia. Aortic stenosis can be diagnosed by auscultation for characteristic heart sounds, particularly a crescendo-decrescendo (i.e., 'ejection') murmur, followed by echocardiography to measure aortic valve area (see diagnosis of aortic stenosis). While Heyde's syndrome may exist alone with no other symptoms of aortic stenosis, the person could also present with evidence of heart failure, fainting, or chest pain. Finally, Heyde's syndrome can be confirmed using blood tests for vWD-2A, although traditional blood tests for von Willebrand factor may result in false negatives due to the subtlety of the abnormality. The gold standard for diagnosis is gel electrophoresis; in people with vWD-2A, the large molecular weight von Willebrand factors will be absent from the SDS-agarose electrophoresis plate.
If untreated, severe symptomatic aortic stenosis carries a poor prognosis with a 2-year mortality rate of 50-60% and a 3-year survival rate of less than 30%. Prognosis after aortic valve replacement for people who are younger than 65 is about five years less than that of the general population; for people older than 65 it is about the same.
Fetal aortic valve stenosis can be diagnosed by echocardiography before birth. The diagnostic features include a poorly contracting left ventricle, aortic valve thickening/restriction, a varying degree of left ventricular hypertrophy and abnormal Doppler flow characteristics in the left heart. There may be little or no detectable flow into or out of the left side of the heart.
There are two screening periods, one during the first trimester and the other during the second trimester. Fetal aortic stenosis is typically detected between 18 and 24 weeks gestation. This early detection is important because it allows for parents to be counseled in a timely and rational manner, allowing for discussion of prognosis and possible outcomes. Another reason for this crucial early detection is because it allows for postnatal management planning.
Penile Revascularization is a specialized vascular-surgical treatment option for Erectile Dysfunction. The 2009 International Consultation on Sexual Dysfunctions recommended that revascularization be limited to nonsmoker, nondiabetic men younger than 55 years of age with isolated stenosis of the internal pudendal artery with absence of venous leak.
Patients with persistent erectile dysfunction after revascularization may benefit from repeat penile duplex ultrasound and pelvic angiography to evalauate the status of the bypass graft and to exclude the presence of a PASS as the cause. The prevalence of an aberrant obturator artery arising from the inferior epigastric artery is approximately 10.5%. If an aberrant obturator artery is visualized arising from the inferior epigastric artery prior to surgical penile revascularization, consideration should be given toward using an alternative source artery or to embolization to avoid the creation of a Penile Artery Shunt Syndrome encountered in this described case.
Percutaneous Coil Embolization of the aberrant obturator artery was performed. Arterial flow rapidly improved through the left dorsal penile artery, and brisk opacification was seen through to the glans penis. Post-procedure, the patient experienced an immediate improvement in erectile function.
The Norwood procedure is a procedure to correct fetal aortic stenosis that occurs after birth. This typically consists of three surgeries creating and removing shunts. The atrial septum is removed, the aortic arch is reconstructed to remove any hypoplasia, and then the main pulmonary artery is connected into this reconstructed arch, resulting in the right ventricle ejecting directly into systemic circulation. In the end, the right ventricle is pumping blood to systemic circulation and to the lungs. However, this procedure carries a very high risk of failure and the patient will likely require a heart transplant.
Another treatment option is to correct the stenosis in utero. In this procedure, fetal positioning is crucial. It is important that the left chest is located anteriorly, and that there are no limbs between the uterine wall and the apex of the left ventricle. The LV apex needs to be within 9 cm of the abdominal wall and the left ventricle outflow track has to be parallel to the intended cannula course in order for the wire to be blindly directed at the aortic valve. A 11.5 cm long, 19-gauge cannula and stylet needle passes through the mother’s abdomen, uterine wall, and fetal chest wall into the left ventricle of the fetus. Then a 0.014 inch guide wire is passed across the stenosis aortic valve, where a balloon is inflated to stretch the aortic annulus.
An alternative to the Norwood procedure is known as the hybrid procedure, was developed in 2008. In the hybrid procedure, bilateral pulmonary artery bands are positioned to limit pulmonary flow while, at the same time, placing a stent in the ductus arteriosus to hold it open. This maintains the connection between the aorta and the systemic circulation. A balloon atrial septostomy is also done. This ensures that there is enough of a connection between the two atria of the heart to provide open blood flow and mixing of oxygen rich and poor blood This procedure spares the baby from undergoing open heart surgery until they are older. They typically come back at 4–6 months of age when they are stronger for the open heart surgery.
Subglottic stenosis is a congenital or acquired narrowing of the subglottic airway. Although it is relatively rare, it is the third most common congenital airway problem (after laryngomalacia and vocal cord paralysis). Subglottic stenosis can present as a life-threatening airway emergency. It is imperative that the otolaryngologist be an expert at dealing with the diagnosis and management of this disorder. Subglottic stenosis can affect both children and adults.
Subglottic stenosis can be of three forms, namely congenital subglottic stenosis, idiopathic subglottic stenosis (ISS) and acquired subglottic stenosis. As the name suggests, congenital subglottic stenosis is a birth defect. Idiopathic subglottic stenosis is a narrowing of the airway due to an unknown cause. Acquired subglottic stenosis generally follows as an after-effect of airway intubation, and in extremely rare cases as a result of gastroesophageal reflux disease (GERD).
Subglottic stenosis is graded according to the Cotton-Meyer classification system from one to four based on the severity of the blockage.
Grade 1 – <50% obstruction
Grade 2 – 51–70% obstruction
Grade 3 – 71–99% obstruction
Grade 4 – no detectable lumen
Treatments to alleviate the symptoms of subglottic stenosis includes a daily dose of steroids such as prednisone, which reduces the inflammation of the area for better breathing. Other medications such as Methotrexate is also being tested by patients but results are pending.
The following table includes the main types of valvular stenosis and regurgitation. Major types of valvular heart disease not included in the table include mitral valve prolapse, rheumatic heart disease and endocarditis.