Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Neuropsychology is the study of neurobiology and psychology. Neuropsychological tests are utilized for the purpose of observing an individuals’ abilities in cognitive functioning, reasoning, and memories. The tests most commonly used for neuropsychological testing include WAIS-III, Stroop test, Bourdon Wiersma test, and the Rey-Osterrieth complex figure test. These tests allow physicians to evaluate the degree to which the bilateral lesions in the operculum have been affected, and allow for the determination of proper treatment.
Psycholinguistics pertain to the psychological and neurobiological components that allow humans to acquire, utilize, comprehend, and produce language. The tests most commonly used for psycholinguistic testing include the Dutch version of , syntactic comprehension test, and the Token test. Psycholinguistics allow physicians to narrow down and rule out other disorders that may be similar to FCMS when diagnosing a patient.
Diagnosis may be clinical if associated with dementia and other etiologies. In cases caused by stroke, MRI will show a corresponding stroke in the inferior parietal lobule. In the acute stage, this will be bright (restricted diffusion) on the DWI sequence and dark at the corresponding area on the ADC sequence.
The nature of the alleged mental representations that underlie the act of pointing to target body parts have been a controversial issue. Originally, it was diagnosed as the effects of general mental deterioration or of aphasia on the task of pointing to body parts on verbal command. However, contemporary neuropsychological therapy seeks to establish the independence of autotopagnosia from other disorders. With such a general definition, a patient that presents with a dysfunction of or failure in accessing one of four mental representation systems suffers from autotopagnosia. Through observational testing, the type of mental misrepresentation of the body can be deduced: whether "semantic", "visuospatial", "somatosensory", or "motor misrepresentations". Neuropsychological tests can provide a proper diagnosis in regards to the specificity of patient’s agnosic condition.
1) Test 1: Body Part Localization: Free vision and no vision conditions
2) Test 2: On-line positioning of body vis-à-vis objects
3) Test 3: Localization of objects on the body surface
4) Test 4: Body part semantic knowledge
5) Test 5: Matching body parts: Effect of viewing angle
Sensory aphasia cannot be diagnosed through the use of imaging techniques. Differences in cognition between asymptomatic subjects and affected patients can be observed via functional magnetic resonance imaging (fMRI). However, these results only reveal temporal differences in cognition between control and diagnosed subjects. The degree of progression during therapy can also be surveyed through cognition tests monitored by fMRI. Many patients’ progress is assessed over time via repeated testing and corresponding cerebral imaging by fMRI.
The diagnosis of frontal lobe disorder can be divided into the following three categories:
- Clinical history
Frontal lobe disorders may be recognized through a sudden and dramatic change in a person's personality, for example with loss of social awareness, disinhibition, emotional instability, irritability or impulsiveness. Alternatively the disorder may become apparent because of mood changes such as depression, anxiety or apathy.
- Examination
On mental state examination a person with frontal lobe damage may show speech problems, with reduced verbal fluency. Typically the person is lacking in insight and judgment, but does not have marked cognitive abnormalities or memory impairment (as measured for example by the mini-mental state examination). With more severe impairment there may be echolalia or mutism. Neurological examination may show primitive reflexes (also known as frontal release signs) such as the grasp reflex. Akinesia (lack of spontaneous movement) will be present in more severe and advanced cases.
- Further investigation
A range of neuropsychological tests are available for clarifying the nature and extent of frontal lobe dysfunction. For example, concept formation and ability to shift mental sets can be measured with the Wisconsin Card Sorting Test, planning can be assessed with the Mazes subtest of the WISC. Individuals with Pick's disease will show frontal cortical atrophy on MRIs. Frontal impairment due to head injuries, tumours or cerebrovascular disease will also be apparent on brain imaging.
Although qualitative and quantitative studies exist, there is little consensus on the proper method to assess for apraxia. The criticisms of past methods include failure to meet standard psychometric properties as well as research-specific designs that translate poorly to non-research use.
The Test to Measure Upper Limb Apraxia (TULIA) is one method of determining upper limb apraxia through the qualitative and quantitative assessment of gesture production. In contrast to previous publications on apraxic assessment, the reliability and validity of TULIA was thoroughly investigated. The TULIA consists of subtests for the imitation and pantomime of non-symbolic (“put your index finger on top of your nose”), intransitive (“wave goodbye”) and transitive (“show me how to use a hammer”) gestures. Discrimination (differentiating between well- and poorly performed tasks) and recognition (indicating which object corresponds to a pantomimed gesture) tasks are also often tested for a full apraxia evaluation.
However, there may not be a strong correlation between formal test results and actual performance in everyday functioning or activities of daily living (ADLs). A comprehensive assessment of apraxia should include formal testing, standardized measurements of ADLs, observation of daily routines, self-report questionnaires and targeted interviews with the patients and their relatives.
As stated above, apraxia should not be confused with aphasia; however, they frequently occur together. It has been stated that apraxia is so often accompanied by aphasia that many believe that if a person displays AOS; it should be assumed that the patient also has some level of aphasia.
Expressive aphasia is classified as non-fluent aphasia, as opposed to fluent aphasia. Diagnosis is done on a case by case basis, as lesions often affect the surrounding cortex and deficits are highly variable among patients with aphasia.
A physician is typically the first person to recognize aphasia in a patient who is being treated for damage to the brain. Routine processes for determining the presence and location of lesion in the brain include Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. The physician will complete a brief assessment of the patient's ability to understand and produce language. For further diagnostic testing, the physician will refer the patient to a speech-language pathologist, who will complete a comprehensive evaluation.
In order to diagnose a patient who is suffering from Broca’s aphasia, there are certain commonly used tests and procedures. The Western Aphasia Battery (WAB) classifies individuals based on their scores on the subtests; spontaneous speech, auditory comprehension, repetition, and naming. The Boston Diagnostic Aphasia Examination (BDAE) can inform users what specific type of aphasia they may have, infer the location of lesion, and assess current language abilities. The Porch Index of Communication Ability (PICA) can predict potential recovery outcomes of the patients with aphasia. Quality of life measurement is also an important assessment tool. Tests such as the Assessment for Living with Aphasia (ALA) and the Satisfaction with Life Scale (SWLS) allow for therapists to target skills that are important and meaningful for the individual.
In addition to formal assessments, patient and family interviews are valid and important sources of information. The patient’s previous hobbies, interests, personality, and occupation are all factors that will not only impact therapy but may motivate them throughout the recovery process. Patient interviews and observations allow professionals to learn the priorities of the patient and family and determine what the patient hopes to regain in therapy. Observations of the patient may also be beneficial to determine where to begin treatment. The current behaviors and interactions of the patient will provide the therapist with more insight about the client and his or her individual needs. Other information about the patient can be retrieved from medical records, patient referrals from physicians, and the nursing staff.
In non-speaking patients who use manual languages, diagnosis is often based on interviews from the patient's acquaintances, noting the differences in sign production pre- and post- damage to the brain. Many of these patients will also begin to rely on non-linguistic gestures to communicate, rather than signing since their language production is hindered.
Individuals with conduction aphasia are able to express themselves fairly well, with some word finding and functional comprehension difficulty. Although people with aphasia may be able to express themselves fairly well, they tend to have issues repeating phrases, especially phrases that are long and complex. When asked to repeat something, the patient will be unable to do so without significant difficulty, repeatedly attempting to self-correct ("conduite d'approche"). When asked a question, however, patients can answer spontaneously and fluently.
Several standardized test batteries exist for diagnosing and classifying aphasias. These tests are capable of identifying conduction aphasia with relative accuracy. The Boston Diagnostic Aphasia Examination (BDAE) and the Western Aphasia Battery (WAB) are two commonly used test batteries for diagnosing conduction aphasia. These examinations involve a set of tests, which include asking patients to name pictures, read printed words, count aloud, and repeat words and non-words (such as "shwazel").
Sensory aphasia is typically diagnosed by non-invasive evaluations. Neurologists, neuropsychologists or speech pathologists will administer oral evaluations to determine the extent of a patient’s comprehension and speech capability. Initial assessment will determine if the cause of linguistic deficiency is aphasia. If the diagnosis is then confirmed, testing will next address the type of aphasia and its severity. The Boston Diagnostic Aphasia Examination specializes in determining the severity of a sensory aphasia through the observation of conversational behaviors. Several modalities of perception and response are observed in conjunction with the subject’s ability to process sensory information. The location of the brain lesion and type of the aphasia can then be inferred from the observed symptoms. The Minnesota Test for Differential Diagnosis is the most lengthy and thorough assessment of sensory aphasia. It pinpoints weaknesses in the auditory and visual senses, as well as reading comprehension. From this differential diagnosis, a patient’s course of treatment can be determined. After treatment planning, the Porch Index of Communicative Ability is used to evaluate prognosis and the degree of recovery.
"Aphasia is usually first recognized by the physician who treats the person for his or her brain injury. Most individuals will undergo a magnetic resonance imaging (MRI) or computed tomography (CT) scan to confirm the presence of a brain injury and to identify its precise location." In circumstances where a person is showing possible signs of aphasia, the physician will refer him or her to a speech-language pathologist (SLP) for a comprehensive speech and language evaluation. SLPs will examine the individual's ability to express him or herself through speech, understand language in written and spoken forms, write independently, and perform socially.
The American Speech, Language, Hearing Association (ASHA) states a comprehensive assessment should be conducted in order to analyze the patient's communication functioning on multiple levels; as well as the effect of possible communication deficits on activities of daily living. Typical components of an aphasia assessment include: case history, self report, oral-motor examination, language skills, identification of environmental and personal factors, and the assessment results. A comprehensive aphasia assessment includes both formal and informal measures.
Formal assessments:
- Boston Diagnostic Aphasia Examination (BDAE): diagnoses the presence and type of aphasia, focusing on location of lesion and the underlying linguistic processes.
- Western Aphasia Battery - Revised (WAB): determines the presence, severity, and type of aphasia; and can also determine baseline abilities of patient.
- Communication Activities of Daily Living - Second Edition (CADL-2): measures functional communication abilities; focuses on reading, writing, social interactions, and varying levels of communication.
- Revised Token Test (RTT): assess receptive language and auditory comprehension; focuses on patient's ability to follow directions.
Informal Assessments:
Informal assessments aide in the diagnosis of patients with suspected aphasia.
- Conversational Speech and Language Sample
- Family Interview
- Case History or Medical Chart Review
- Behavioral Observations
Diagnostic information should be scored and analyzed appropriately. Treatment plans and individual goals should be developed based on diagnostic information, as well as patient and caregiver needs, desires, and priorities.
The table below demonstrates the extensive and differential diagnosis of acquired epileptic aphasia along with Cognitive and Behavioral Regression:
Note: EEG = electroencephalographic; ESES = electrical status epilepticus of sleep; RL = receptive language; S = sociability
- Continuous spike and wave of slow-wave sleep (>85% of slow-wave sleep).
The best way to see if anomic aphasia has developed is by using verbal as well as imaging tests. The combination of the two tests seem to be most effective, since either test done alone may give false positives or false negatives. For example, the verbal test is used to see if there is a speech disorder, and whether it is a problem in speech production or in comprehension. Patients with Alzheimer's disease have speech problems that are linked to dementia or progressive aphasias which can include anomia. The imaging test, mostly done using MRI scans, is ideal for lesion mapping or viewing deterioration in the brain. However, imaging cannot diagnose anomia on its own because the lesions may not be located deep enough to damage the white matter or damage the arcuate fasciculus. However, anomic aphasia is very difficult to associate with a specific lesion location in the brain. Therefore, the combination of speech tests and imaging tests has the highest sensitivity and specificity.
It is important to first do a hearing test, in case the patient cannot clearly hear the words or sentences needed in the speech repetition test. In the speech tests, the person is asked to repeat a sentence with common words; if the person cannot identify the word but he or she can describe it, then the person is highly likely to have anomic aphasia. However, to be completely sure, the test is given while a test subject is in an fMRI scanner, and the exact location of the lesions and areas activated by speech are pinpointed. Few simpler or cheaper options are available, so lesion mapping and speech repetition tests are the main ways of diagnosing anomic aphasia.
In order to assess an individual for agnosia, it must be verified that the individual is not suffering from a loss of sensation, and that both their language abilities and intelligence are intact. In order for an individual to be diagnosed with agnosia, they must only be experiencing a sensory deficit in a single modality. To make a diagnosis, the distinction between apperceptive and associative agnosia must be made. This distinction can be made by having the individual complete copying and matching tasks. If the individual is suffering from a form of apperceptive agnosia they will not be able to match two stimuli that are identical in appearance. In contrast, if an individual is suffering from a form of associative agnosia, they will not be able to match different examples of a stimulus. For example, an individual who has been diagnosed with associative agnosia in the visual modality would not be able to match pictures of a laptop that is open with a laptop that is closed.
Alternate cues may be particularly useful to an individual with environmental agnosia or prosopagnosia. Alternate cues for an individual with environmental agnosia may include color cues or tactile markers to symbolize a new room or to remember an area by. Prosopagnosics may use alternate cues such as a scar on an individual's face or crooked teeth in order to recognize the individual. Hair color and length can be helpful cues as well.
TMoA is diagnosed by the referring physician and speech-language pathologist (SLP). The overall sign of TMoA is nonfluent, reduced, fragmentary echoic, and perseverative speech with frequent hesitations and pauses. Patients with TMoA also have difficulty initiating and maintaining speech. However, speech articulation and auditory comprehension remain typical. The hallmark sign of TMoA is intact repetition in the presence of these signs and symptoms.
TMoA, or any other type of aphasia, is identified and diagnosed through the screening and assessment process. Screening can be conducted by a SLP or other professional when there is a suspected aphasia. The screening does not diagnose aphasia, rather it points to the need for a further comprehensive assessment. A screening typically includes evaluation of oral motor functions, speech production skills, comprehension, use of written and verbal language, cognitive communication, swallowing, and hearing. Both the screening and assessment must be sensitive to the patient’s linguistic and cultural differences. An individual will be recommended to receive a comprehensive assessment if their screening shows signs of aphasia. Under the American Speech-Language-Hearing Association (ASHA) and World Health Organization (WHO) guidelines and the "International Classification of Functioning, Disability and Health" (ICF) framework, the comprehensive assessment encompasses not only speech and language, but also impairments in body structure and function, co-morbid deficits, limitations in activity and participation, and contextual (environmental and personal) factors. The assessment can be static (current functioning) or dynamic (ongoing) and the assessment tools can be standardized or nonstandardized. Typically, the assessment for aphasia includes a gathering of a case history, a self-report from the patient, an oral-motor examination, assessment of expressive and receptive language in spoken and written forms, and identification of facilitators and barriers to patient success. From this assessment, the SLP will determine type of aphasia and the patient's communicative strengths and weaknesses and how their diagnosis may impact their overall quality of life.
The syndrome can be difficult to diagnose and may be misdiagnosed as autism, pervasive developmental disorder, hearing impairment, learning disability, auditory/verbal processing disorder, attention deficit hyperactivity disorder, intellectual disability, childhood schizophrenia, or emotional/behavioral problems. An EEG (electroencephalogram) test is imperative to a diagnosis. Many cases of patients exhibiting LKS will show abnormal electrical brain activity in both the right and left hemispheres of the brain; this is exhibited frequently during sleep. Even though an abnormal EEG reading is common in LKS patients, a relationship has not been identified between EEG abnormalities and the presence and intensity of language problems. In many cases however, abnormalities in the EEG test has preceded language deterioration and improvement in the EEG tracing has preceded language improvement (this occurs in about half of all affected children). Many factors inhibit the reliability of the EEG data: neurologic deficits do not closely follow the maximal EEG changes in time.
The most effective way of confirming LKS is by obtaining overnight sleep EEGs, including EEGs in all stages of sleep. Many conditions like demyelination and brain tumors can be ruled out by using magnetic resonance imaging (MRI). In LKS, fluorodeoxyglucose (FDG) and positron emission tomography (PET) scanning can show decreased metabolism in one or both temporal lobes - hypermetabolism has been seen in patients with acquired epileptic aphasia.
Most cases of LKS do not have a known cause. Occasionally, the condition may be induced secondary to other diagnoses such as low-grade brain tumors, closed-head injury, neurocysticercosis, and demyelinating disease. Central Nervous System vasculitis may be associated with this condition as well.
There are few neuropsychological assessments that can definitively diagnose prosopagnosia. One commonly used test is the famous faces tests, where individuals are asked to recognize the faces of famous persons. However, this test is difficult to standardize. The Benton Facial Recognition Test (BFRT) is another test used by neuropsychologists to assess face recognition skills. Individuals are presented with a target face above six test faces and are asked to identify which test face matches the target face. The images are cropped to eliminate hair and clothes, as many people with prosopagnosia use hair and clothing cues to recognize faces. Both male and female faces are used during the test. For the first six items only one test face matches the target face; during the next seven items, three of the test faces match the target faces and the poses are different. The reliability of the BFRT was questioned when a study conducted by Duchaine and Nakayama showed that the average score for 11 self-reported prosopagnosics was within the normal range.
The test may be useful for identifying patients with apperceptive prosopagnosia, since this is mainly a matching test and they are unable to recognize both familiar and unfamiliar faces. They would be unable to pass the test. It would not be useful in diagnosing patients with associative prosopagnosia since they are able to match faces.
The Cambridge Face Memory Test (CFMT) was developed by Duchaine and Nakayama to better diagnose people with prosopagnosia. This test initially presents individuals with three images each of six different target faces. They are then presented with many three-image series, which contain one image of a target face and two distracters. Duchaine and Nakayama showed that the CFMT is more accurate and efficient than previous tests in diagnosing patients with prosopagnosia. Their study compared the two tests and 75% of patients were diagnosed by the CFMT, while only 25% of patients were diagnosed by the BFRT. However, similar to the BFRT, patients are being asked to essentially match unfamiliar faces, as they are seen only briefly at the start of the test. The test is not currently widely used and will need further testing before it can be considered reliable.
The 20-item Prosopagnosia Index (PI20) is a freely available and validated self-report questionnaire that is able to identify individuals with prosopagnosia. It has been validated against the famous faces test and Cambridge Face Memory Test, with evidence that PI20 scores are correlated with performance on these objective measures of face recognition. It can be downloaded from the Royal Society's Open Science website and on . Alternatively, the questionnaire can be completed online on the official website.
There is no cure for Gerstmann syndrome. Treatment is symptomatic and supportive. Occupational and speech therapies may help diminish the dysgraphia and apraxia. In addition, calculators and word processors may help school children cope with the symptoms of the disorder.
Clinically, anosognosia is often assessed by giving patients an anosognosia questionnaire in order to assess their metacognitive knowledge of deficits. However, neither of the existing questionnaires applied in the clinics are designed thoroughly for evaluating the multidimensional nature of this clinical phenomenon; nor are the responses obtained via offline questionnaire capable of revealing the discrepancy of awareness observed from their online task performance. The discrepancy is noticed when patients showed no awareness of their deficits from the offline responses to the questionnaire but demonstrated reluctance or verbal circumlocution when asked to perform an online task. For example, patients with anosognosia for hemiplegia may find excuses not to perform a bimanual task even though they do not admit it is because of their paralyzed arms.
A similar situation can happen on patients with anosognosia for cognitive deficits after traumatic brain injury when monitoring their errors during the tasks regarding their memory and attention (online emergent awareness) and when predicting their performance right before the same tasks (online anticipatory awareness). It can also occur among patients with dementia and anosognosia for memory deficit when prompted with dementia-related words, showing possible pre-attentive processing and implicit knowledge of their memory problems. More interestingly, patients with anosognosia may overestimate their performance when asked in first-person formed questions but not from a third-person perspective when the questions referring to others.
When assessing the causes of anosognosia within stroke patients, CT scans have been used to assess where the greatest amount of damage is found within the various areas of the brain. Stroke patients with mild and severe levels of anosognosia (determined by response to an anosognosia questionnaire) have been linked to lesions within the temporoparietal and thalamic regions, when compared to those who experience moderate anosognosia, or none at all. In contrast, after a stroke, people with moderate anosognosia have a higher frequency of lesions involving the basal ganglia, compared to those with mild or severe anosognosia.
Treatment for aphasias is generally individualized, focusing on specific language and communication improvements, and regular exercise with communication tasks. Regular therapy for conduction aphasics has been shown to result in steady improvement on the Western Aphasia Battery. However, conduction aphasia is a mild aphasia, and conduction aphasics score highly on the WAB at baseline.
Following are some precautions that should be taken to avoid aphasia, by decreasing the risk of stroke, the main cause of aphasia:
- Exercising regularly
- Eating a healthy diet
- Keeping alcohol consumption low and avoiding tobacco use
- Controlling blood pressure
There is no curative treatment for this condition. Supportive management is helpful.
Imaging studies have shown differing results which probably represents the heterogeneity of language problems than can occur in PNFA. However, classically atrophy of left perisylvian areas is seen.
Comprehensive meta-analyses on MRI and FDG-PET studies identified alterations in the whole left frontotemporal network for phonological and syntactical processing as the most consistent finding. Based on these imaging methods, progressive nonfluent aphasia can be regionally dissociated from the other subtypes of frontotemporal lobar degeneration, frontotemporal dementia and semantic dementia.
As autotopagnosia is not a life-threatening condition it is not on the forefront of medical research. Rather, more research is conducted regarding treatments and therapies to alleviate the lesions and traumas that can cause autotopagnosia. Of all the agnosias, visual agnosia is the most common subject of investigation because it is easiest to assess and has the most promise for potential treatments. Most autotopagnosia studies are centered on a few test subjects as part of a group of unaffected or “controlled” participants, or a simple case study. Case studies surrounding a single patient are most common due to the vague nature of the disease.