Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Causality assessment is used to determine the likelihood that a drug caused a suspected ADR. There are a number of different methods used to judge causation, including the Naranjo algorithm, the Venulet algorithm and the WHO causality term assessment criteria. Each have pros and cons associated with their use and most require some level of expert judgement to apply.
An ADR should not be labeled as 'certain' unless the ADR abates with a challenge-dechallenge-rechallenge protocol (stopping and starting the agent in question). The chronology of the onset of the suspected ADR is important, as another substance or factor may be implicated as a cause; co-prescribed medications and underlying psychiatric conditions may be factors in the ADR.
Assigning causality to a specific agent often proves difficult, unless the event is found during a clinical study or large databases are used. Both methods have difficulties and can be fraught with error. Even in clinical studies some ADRs may be missed as large numbers of test individuals are required to find that adverse drug reaction. Psychiatric ADRs are often missed as they are grouped together in the questionnaires used to assess the population.
Many countries have official bodies that monitor drug safety and reactions. On an international level, the WHO runs the Uppsala Monitoring Centre, and the European Union runs the European Medicines Agency (EMEA). In the United States, the Food and Drug Administration (FDA) is responsible for monitoring post-marketing studies.
In Canada, the Marketed Health Products Directorate of Health Canada is responsible for the surveillance of marketed health products. In Australia, the Therapeutic Goods Administration (TGA) conducts postmarket monitoring of therapeutic products.
Antineoplastic resistance, synonymous with chemotherapy resistance, is the ability of cancer cells to survive and grow despite different anti-cancer therapies, i.e. their multiple drug resistance. There are two general causes of antineoplastic therapy failure:
Inherent resistance, such as genetic characteristics, giving cancer cells their resistance from the beginning, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure.
Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the multiple drug resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies.
There are two general causes of antineoplastic therapy failure: Inherent genetic characteristics, giving cancer cells their resistance, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure. Altered membrane transport, enhanced DNA repair, apoptotic pathway defects, alteration of target molecules, protein and pathway mechanisms, such as enzymatic deactivation.
Since cancer is a genetic disease, two genomic events underlie acquired drug resistance: Genome alterations (e.g. gene amplification and deletion) and epigenetic modifications.
Cancer cells are constantly using a variety of tools, involving genes, proteins and altered pathways, to ensure their survival against antineoplastic drugs.
Drug eruptions are diagnosed mainly from the medical history and clinical examination. However, they can mimic a wide range of other conditions, thus delaying diagnosis (for example, in drug-induced lupus erythematosus, or the acne-like rash caused by erlotinib). A skin biopsy, blood tests or immunological tests can also be useful.
Drug reactions have characteristic timing. The typical amount of time it takes for a rash to appear after exposure to a drug can help categorize the type of reaction. For example, Acute generalized exanthematous pustulosis usually occurs within 4 days of starting the culprit drug. Drug Reaction with Eosinophilia and Systemic Symptoms usually occurs between 15 and 40 days after exposure. Toxic epidermal necrolysis and Stevens-Johnson syndrome typically occur 7–21 days after exposure. Anaphylaxis occurs within minutes. Simple exanthematous eruptions occur between 4 and 14 days after exposure.
TEN and SJS are severe cutaneous drug reactions that involve the skin and mucous membranes. To accurately diagnose this condition, a detailed drug history is crucial. Often, several drugs may be causative and allergy testing may be helpful. Sulfa drugs are well-known to induce TEN or SJS in certain people. For example, HIV patients have an increased incidence of SJS or TEN compared to the general population and have been found to express low levels of the drug metabolizing enzyme responsible for detoxifying sulfa drugs. Genetics plays an important role in predisposing certain populations to TEN and SJS. As such, there are some FDA recommended genetic screening tests available for certain drugs and ethnic populations to prevent the occurrence of a drug eruption. The most well known example is carbamezepine (an anti-convulsant used to treat seizures) hypersensitivity associated with the presence of HLA-B*5801 genetic allele in Asian populations.
DIHS is a delayed onset drug eruption, often occurring a few weeks to 3 months after initiation of a drug. Interestingly, worsening of systemic symptoms occurs 3-4 days after cessation of the offending drug. There are genetic risk alleles that are predictive of the development of DIHS for particular drugs and ethnic populations. The most important of which is abacavir (an anti-viral used in the treatment of HIV) hypersensitivity associated with the presence of the HLA-B*5701 allele in European and African population in the United States and Australians.
AGEP is often caused by antimicrobial, anti-fungal or antimalarial drugs. Diagnosis is often carried out by patch testing. This testing should be performed within one month after resolution of the rash and patch test results are interpreted at different time points: 48 hours, 72hours and even later at 96 hours and 120 hours in order to improve the sensitivity.
Painful red swelling of the hands and feet in a patient receiving chemotherapy is usually enough to make the diagnosis. The problem can also arise in patients after bone marrow transplants, as the clinical and histologic features of PPE can be similar to cutaneous manifestations of acute (first 3 weeks) graft-versus-host disease. It is important to differentiate PPE, which is benign, from the more dangerous graft-versus-host disease. As time progresses, patients with graft-versus-host disease progress to have other body parts affected, while PPE is limited to hands and feet. Serial biopsies every 3 to 5 days can also be helpful in differentiating the two disorders (Crider et al., 1986).
It is estimated that 2—3 percent of hospitalised patients are affected by a drug eruption, and that serious drug eruptions occur in around 1 in 1000 patients.
The diagnosis is based on involvement of less than 10% of the skin. It is known as TEN when more than 30% of the skin is involved and an intermediate form with 10 to 30% involvement. A positive Nikolsky's sign is helpful in the diagnosis of SJS and TEN. A skin biopsy is helpful, but not required, to establish a diagnosis of SJS and TEN.
The cooling of hands and feet during chemotherapy may help prevent PPE (Baack and Burgdorf, 1991; Zimmerman et al., 1995). Support for this and a variety of other approaches to treat or prevent acral erythema comes from small clinical studies, although none has been proven in a randomised controlled clinical trial of sufficient size.
Diagnosis of alcohol-induced respiratory symptoms can be strongly suggested on the bases of survey questionnaires. Questionnaires can be devised to determine the specific types of alcoholic beverages eliciting reactions; reactions evoked by one or only a few but not other types of alcoholic beverage, particularly when the offending beverage(s) is wine and/or beer, suggest that the reactions are due to classical allergic reaction to allergens in the beverage; reactions to all or most types of alcoholic beverages favors a genetic (i.e. acetaldehyde-induce) basis. Further differentiation between these two causes can be tested under medical supervision be determining if ingestion of a water-diluted pure ethanol solution elicits reactions or if an offending alcoholic beverage but not the same beverage without ethanol elicits reactions. Either result would favor an acetaldehyde-induced genetic basis for the reaction.
Diagnosis of alcohol sensitivity due to the accumulation of acetaldehyde in individuals bearing the glu487lys ALDH2 allele can be made by measuring the diameter of the erythema (i.e. red) area developing under a 15 millimeter skin patch plaster soaked in 70% ethanol and applied for 48 hours (ethanol patch test); erythema of 15 millimeters is considered positive with a false positive ratio ([100 x {number of individuals with a positive patch test}]/{number of individuals with a normal ALDH2 genotype}) of 5.9% and a false negative ratio ([100 x {number of individuals with a negative patch test}]/{number of individuals with a glu487lys ALDH2 allele}) of 0%. To resolve ambiguities in or replace the ethanol patch test for other reasons, a polymerase chain reaction using special primers and conditions can be used to directly detect the glu487lys ALDH2 genes. For other causes of acetaldehyde-induced alcohol sensitivities, the ethanol patch test will need to be tested for verification of its acetaldehyde basis and appropriate polymerase chain reactions will likewise be needed to verify a genetic basis for symptoms.
Diagnosis of alcohol sensitivity due to allergic reactivity to the allergens in alcoholic beverages can be confirmed by standard skin prick tests, skin patch tests, blood tests, challenge tests, and challenge/elimination tests as conducted for determining the allergen causing other classical allergic reactions (see allergy and Skin allergy tests.)
The 1997 International Germ Cell Consensus Classification is a tool for estimating the risk of relapse after treatment of malignant germ cell tumor.
A small study of ovarian tumors in girls reports a correlation between cystic and benign tumors and, conversely, solid and malignant tumors. Because the cystic extent of a tumor can be estimated by ultrasound, MRI, or CT scan before surgery, this permits selection of the most appropriate surgical plan to minimize risk of spillage of a malignant tumor.
Access to appropriate treatment has a large effect on outcome. A 1993 study of outcomes in Scotland found that for 454 men with non-seminomatous (non-germinomatous) germ cell tumors diagnosed between 1975 and 1989, 5-year survival increased over time and with earlier diagnosis. Adjusting for these and other factors, survival was 60% higher for men treated in a cancer unit that treated the majority of these men, even though the unit treated more men with the worst prognosis.
Choriocarcinoma of the testicles has the worst prognosis of all germ cell cancers
There are no laboratory or skin testing methods for testing salicylate sensitivity. Provocative challenge is one method of obtaining reliable diagnosis. Provocative challenge is intended to induce a controlled reaction as a means of confirming diagnosis. During provocative challenge, the person is given incrementally higher doses of salicylates, usually aspirin, under medical supervision, until either symptoms appear or the likelihood of symptoms appearing is ruled out.
The primary treatment strategy is to eliminate or discontinue the offensive agent. Supportive therapy, such as ice packs, may be provided to get the body temperature within physiologic range. In severe cases, when the fever is high enough (generally at or above ~104° F or 40° C), aggressive cooling such as an ice bath and pharmacologic therapy such as benzodiazepines may be deemed appropriate.
When penicillin is used at high doses hypokalemia, metabolic acidosis, and hyperkalemia can occur. Developing hypernatremia after administering high doses of penicillin can be a serious side effect.
Cytokine release syndrome is an adverse effect of some monoclonal antibody drugs, as well as adoptive T-cell therapies. Severe cases have been called "cytokine storms", a term borrowed from discussions of the pathophysiology of immune disorders and infectious disease.
CRS has been known since the approval of the first monoclonal antibody drug, Muromonab-CD3, which causes CRS, but people working in the field of drug development at biotech and pharmaceutical companies, regulatory agencies, and academia began to more intensely discuss methods to classify it and how to mitigate its risk following the disastrous 2006 Phase I clinical trial of TGN 1412, in which the six subjects experienced severe CRS.
An important salicylate drug is aspirin, which has a long history. Aspirin intolerance was widely known by 1975, when the understanding began to emerge that it is a pharmacological reaction, not an allergy.
Women with benign germ cell tumors such as mature teratomas (dermoid cysts) are cured by ovarian cystectomy or oophorectomy. In general, all patients with malignant germ cell tumors will have the same staging surgery that is done for epithelial ovarian cancer. If the patient is in her reproductive years, an alternative is unilateral salpingoophorectomy, while the uterus, the ovary, and the fallopian tube on the opposite side can be left behind. This isn't an option when the cancer is in both ovaries. If the patient has finished having children, the surgery involves complete staging including salpingoophorectomy on both sides as well as hysterectomy.
Most patients with germ cell cancer will need to be treated with combination chemotherapy for at least 3 cycles. The chemotherapy regimen most commonly used in germ cell tumors is called PEB (or BEP), and consists of bleomycin, etoposide, a platinum-based antineoplastic (cisplatin).
Stevens–Johnson syndrome (SJS) is a milder form of toxic epidermal necrolysis (TEN). These conditions were first recognised in 1922. A classification first published in 1993, that has been adopted as a consensus definition, identifies Stevens–Johnson syndrome, toxic epidermal necrolysis, and SJS/TEN overlap. All three are part of a spectrum of severe cutaneous reactions (SCAR) which affect skin and mucous membranes. The distinction between SJS, SJS/TEN overlap, and TEN is based on the type of lesions and the amount of the body surface area with blisters and erosions. It is agreed that the most reliable method to classify EM, SJS, and TEN is based on lesion morphology and extent of epidermal detachment. Blisters and erosions cover between 3% and 10% of the body in SJS, 11–30% in SJS/TEN overlap, and over 30% in TEN. The skin pattern most commonly associated with SJS is widespread, often joined or touching (confluent), papuric spots (macules) or flat small blisters or large blisters which may also join together. These occur primarily on the torso.
SJS, TEN, and SJS/TEN overlap can be mistaken for erythema multiforme. Erythema multiforme, which is also within the SCAR spectrum, differs in clinical pattern and etiology. Although both SJS and TEN can also be caused by infections, they are most often adverse effects of medications.
CRS is an adverse effect of some drugs and is a form of systemic inflammatory response syndrome.
The Common Terminology Criteria for Adverse Events classifications for CRS as of version 4.03 issued in 2010 were:
Many people have indicated that they have a side effect related to an allergic reaction to penicillin. It has been proposed that as many as 90% of those claiming to have an allergy to penicillin are able to take it. Identifying an allergy to penicillin requires a hypersensitivity skin test which diagnoses IgE-mediated immune responses caused by penicillin. This test is typically performed by an allergist who uses a skin-prick and intradermal injection of penicilloyl-polylysine, a negative control (normal saline), and a positive control (histamine).
There is a common side effect that can develop when other medications are used. This is the development of cross sensitivities to other antibiotics. If someone has developed side effects when taking penicillin, these side effects may develop with a new medication even though the person has not taken the new medication before. Those medications that may cause a cross sensitivity reaction are: carbapenems, ampicillin, cefazolin, cephalosporins and cloxacillin.
A drug interaction is a situation in which a substance (usually another drug) affects the activity of a drug when both are administered together. This action can be synergistic (when the drug's effect is increased) or antagonistic (when the drug's effect is decreased) or a new effect can be produced that neither produces on its own. Typically, interactions between drugs come to mind (drug-drug interaction). However, interactions may also exist between drugs and foods (drug-food interactions), as well as drugs and medicinal plants or herbs (drug-plant interactions). People taking antidepressant drugs such as monoamine oxidase inhibitors should not take food containing tyramine as hypertensive crisis may occur (an example of a drug-food interaction). These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances.
It is therefore easy to see the importance of these pharmacological interactions in the practice of medicine. If a patient is taking two drugs and one of them increases the effect of the other it is possible that an overdose may occur. The interaction of the two drugs may also increase the risk that side effects will occur. On the other hand, if the action of a drug is reduced it may cease to have any therapeutic use because of under dosage. Notwithstanding the above, on occasion these interactions may be sought in order to obtain an improved therapeutic effect. Examples of this include the use of codeine with paracetamol to increase its analgesic effect. Or the combination of clavulanic acid with amoxicillin in order to overcome bacterial resistance to the antibiotic. It should also be remembered that there are interactions that, from a theoretical standpoint, may occur but in clinical practice have no important repercussions.
The pharmaceutical interactions that are of special interest to the practice of medicine are primarily those that have negative effects for an organism. The risk that a pharmacological interaction will appear increases as a function of the number of drugs administered to a patient at the same time. Over a third (36%) of older adults in the U.S. regularly use 5 or more medications or supplements and 15% are potentially at risk for a major drug-drug interaction. Both the use of medications and subsequent adverse drug interactions have increased significantly between 2005-2011.
It is possible that an interaction will occur between a drug and another substance present in the organism (i.e. foods or alcohol). Or in certain specific situations a drug may even react with itself, such as occurs with dehydration. In other situations, the interaction does not involve any effect on the drug. In certain cases, the presence of a drug in an individual's blood may affect certain types of laboratory analysis (analytical interference).
It is also possible for interactions to occur outside an organism before administration of the drugs has taken place. This can occur when two drugs are mixed, for example, in a saline solution prior to intravenous injection. Some classic examples of this type of interaction include that thiopentone and suxamethonium should not be placed in the same syringe and same is true for benzylpenicillin and heparin. These situations will all be discussed under the same heading due to their conceptual similarity.
Drug interactions may be the result of various processes. These processes may include alterations in the pharmacokinetics of the drug, such as alterations in the absorption, distribution, metabolism, and excretion (ADME) of a drug. Alternatively, drug interactions may be the result of the pharmacodynamic properties of the drug, e.g. the co-administration of a receptor antagonist and an agonist for the same receptor.
Among US adults older than 55, 4% are taking medication and or supplements that put them at risk of a major drug interaction. Potential drug-drug interactions have increased over time and are more common in the low educated elderly even after controlling for age, sex, place of residence, and comorbidity.
Anticonvulsant/sulfonamide hypersensitivity syndrome is a potentially serious hypersensitivity reaction that can be seen with drugs with an aromatic amine chemical structure, such as aromatic anticonvulsants (e.g. diphenylhydantoin, phenobarbital, phenytoin, carbamazepine, lamotrigine), sulfonamides, or other drugs with an aromatic amine (procainamide). Cross-reactivity should not occur between drugs with an aromatic amine and drugs without an aromatic amine (e.g., sulfonylureas, thiazide diuretics, furosemide, and acetazolamide); therefore, these drugs can be safely used in the future.
The hypersensitivity syndrome is characterized by a skin eruption that is initially morbilliform. The rash may also be a severe Stevens-Johnson syndrome or toxic epidermal necrolysis. Systemic manifestations occur at the time of skin manifestations and include eosinophilia, hepatitis, and interstitial nephritis. However, a subgroup of patients may become hypothyroid as part of an autoimmune thyroiditis up to 2 months after the initiation of symptoms.
This kind of adverse drug reaction is caused by the accumulation of toxic metabolites; it is not the result of an IgE-mediated reaction. The risk of first-degree relatives’ developing the same hypersensitivity reaction is higher than in the general population.
As this syndrome can present secondary to multiple anticonvulsants, the general term "anticonvulsant hypersensitivity syndrome" is favored over the original descriptive term "dilantin hypersensitivity syndrome."
Intolerance to analgesics, particularly NSAIDs, is relatively common. It is thought that a variation in the metabolism of arachidonic acid is responsible for the intolerance. Symptoms include chronic rhinosinusitis with nasal polyps, asthma, gastrointestinal ulcers, angioedema, and urticaria.
Avoidance of ethanol is the safest, surest, and cheapest treatment. Indeed, surveys find a positive correlation between high incidences of glu487lys ALDH2 allele-related alcohol-induced respiratory reactions as well as other causes of these reactions and low levels of alcohol consumption, alcoholism, and alcohol-related diseases. Evidently, people suffering these reaction self-impose avoidance behavior. There is a proviso here: ethanol, at surprisingly high concentrations, is used as a solvent to dissolve many types of medicines and other ingredients. This pertains particularly to liquid cold medicines and mouthwashes. Ethanol avoidance includes avoiding the ingestion of and, depending on an individual's history, mouth washing with, such agents.
Type H1 antagonists in the histamine antagonist family of drugs were tested in Japanese volunteers with alcohol-induced asthma (who presumably have glu487lys ALDH2 allele-associated asthma) and found to be completely effective in blocking bronchoconstriction responses to alcoholic beverages; these blockers, it is suggested, may be taken 1–2 hours before consumption of alcohol beverages as a preventative of alcohol-induced respiratory reactions. In the absence of specific studies on the prevention of classical alcohol induced rhinitis and asthma due to allergens in alcoholic beverages, see asthma section on Prevention and rhinitis section on Prevention of allergen-induced reactions.
In the absence of specific studies on the treatment of acute alcohol-induced bronchoconstriction and rhinitis, treatment guidelines should probably follow those of their comparable allergen-induced classical allergic reactions (see asthma section on Treatment and rhinitis section on Treatment) but possibly favoring the testing of H1 antagonist anti-histamines as part of the initial protocol.