Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Patients show markedly low immunoglobulin levels of IgG, IgA, and IgM.
Elevated IgE is the hallmark of HIES. An IgE level greater than 2,000 IU/mL is often considered diagnostic. However, patients younger than 6 months of age may have very low to non-detectable IgE levels. Eosinophilia is also a common finding with greater than 90% of patients having eosinophil elevations greater than two standard deviations above the normal mean. Genetic testing is available for "STAT3" (Job's Syndrome), "DOCK8 (DOCK8 Immunodeficiency or DIDS)", "PGM3" (PGM3 deficiency), "SPINK5" (Netherton Syndrome - NTS), and "TYK2" genetic defects.
The diagnosis of hyper IgM syndrome can be done via the following methods and tests:
- MRI
- Chest radiography
- Pulmonary function test
- Lymph node test
- Laboratory test (to measure CD40)
Most patients with hyper IgE syndrome are treated with long-term antibiotic therapy to prevent staphylococcal infections. Good skin care is also important in patients with hyper IgE syndrome. High-dose intravenous gamma-globulin has also been suggested for the treatment of severe eczema in patients with HIES and atopic dermatitis.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
A new investigation has identified a seemingly successful treatment for LRBA deficiency by targeting CTLA4. Abatacept, an approved drug for rheumatoid arthritis, mimics the function of CTLA4 and has found to reverse life-threatening symptoms. The study included nine patients that exhibited improved clinical status and halted inflammatory conditions with minimal infectious or autoimmune complications. The study also suggests that therapies like chloroquine or hydroxychloroquine, which inhibit lysosomal degradation, may prove to be effective, as well. Larger cohorts are required to further validate these therapeutic approaches as effective long-term treatments for this disorder.
When suspected, the diagnosis can be confirmed by laboratory measurement of IgA level in the blood. SigAD is an IgA level < 7 mg/dL with normal IgG and IgM levels (reference range 70–400 mg/dl for adults; children somewhat less).
Five "types" of hyper IgM syndrome have been characterized:
- Hyper-IgM syndrome type 1 (X-linked), characterized by mutations of the "CD40LG" gene. In this type, T cells cannot tell B cells to switch classes.
- Hyper-IgM syndrome type 2 (autosomal recessive), characterized by mutations of the "AICDA" gene. In this type, B cells cannot recombine genetic material to change heavy chain production
- Hyper-IgM syndrome type 3 characterized by mutations of the "CD40" gene. In this type, B cells cannot receive the signal from T cells to switch classes.
- Hyper-IgM syndrome type 4 which is a defect in class switch recombination downstream of the AICDA gene that does not impair Somatic Hypermutation.
- Hyper-IgM syndrome type 5 characterized by mutations of the "UNG" gene.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
Among the diagnostic tests that can be done in determining if an individual has complement deficiencies is:
- CH50 measurement
- Immunochemical methods/test
- C3 deficiency screening
- Mannose-binding lectin (lab study)
- Plasma levels/regulatory proteins (lab study)
XLA diagnosis usually begins due to a history of recurrent infections, mostly in the respiratory tract, through childhood. This is due to humoral immunodeficiency. The diagnosis is probable when blood tests show the complete lack of circulating B cells (determined by the B cell marker CD19 and/or CD20), as well as low levels of all antibody classes, including IgG, IgA, IgM, IgE and IgD.
When XLA is suspected, it is possible to do a Western Blot test to determine whether the Btk protein is being expressed. Results of a genetic blood test confirm the diagnosis and will identify the specific Btk mutation, however its cost prohibits its use in routine screening for all pregnancies. Women with an XLA patient in their family should seek genetic counseling before pregnancy.Although the symptoms of a XLA and other primary immune diseases (PID) include repeated and often severe infections, the average time for a diagnosis of a PID can be up to 10 years.
Diagnosis
Originally NEMO deficiency syndrome was thought to be a combination of Ectodermal Dysplasia (ED) and a lack of immune function, but is now understood to be more complex disease. NEMO Deficiency Syndrome may manifest itself in the form of several different diseases dependent upon mutations of the IKBKG gene such as Incontinentia pigmenti or Ectodermal dysplasia.
The clinical presentation of NEMO deficiency is determined by three main symptoms:
1. Susceptibility to pyogenic infections in the form of severe local inflammation
2. Susceptibility to mycobacterial infection
3. Symptoms of Ectodermal Dysplasia
To determine whether or not patient has NEMO deficiency, an immunologic screen to test immune system response to antigen may be used although a genetic test is the only way to be certain as many individuals respond differently to the immunological tests.
Commonly Associated Diseases
NEMO deficiency syndrome may present itself as Incontinentia pigmenti or Ectodermal dysplasia depending on the type of genetic mutation present, such as if the mutation results in the complete loss of gene function or a point mutation.
Amorphic genetic mutations in the IKBKG gene, which result in the loss of gene function, typically present themselves as Incontinetia Pigmenti (IP). Because loss of NEMO function is lethal, only heterozygous females or males with XXY karyotype or mosaicism for this gene survive and exhibit symptoms of Incontinetia Pigmenti, such as skin lesions and abnormalities in hair, teeth, and nails. There are a variety of mutations that may cause the symptoms of IP, however, they all involve the deletion of exons on the IKBKG gene.
Hypomorphic genetic mutations in the IKBKG gene, resulting in a partial loss of gene function, cause the onset of Anhidrotic ectodermal dysplasia with Immunodeficiency (EDA-IP). The lack of NEMO results in a decreased levels of NF-κB transcription factor translocation and gene transcription, which in turn leads to a low level of immunoglobulin production. Because NF-κB translocation is unable to occur without proper NEMO function, the cell signaling response to immune mediators such as IL-1β, IL-18, and LPS are ineffective thus leading to a compromised immune response to various forms of bacterial infections.
Treatment
The aim of treatment is to prevent infections so children will usually be started on immunoglobulin treatment. Immunoglobulin is also known as IgG or antibody. It is a blood product and is given as replacement for people who are unable to make their own antibodies. It is the mainstay of treatment for patients affected by primary antibody deficiency. In addition to immunoglobulin treatment, children may need to take antibiotics or antifungal medicines to prevent infections or treat them promptly when they occur. Regular monitoring and check-ups will help to catch infections early. If an autoimmune response occurs, this can be treated with steroid and/or biologic medicines to damp down the immune system so relieving the symptoms.
In some severely affected patients, NEMO deficiency syndrome is treated using a bone marrow or blood stem cell transplant. The aim is to replace the faulty immune system with an immune system from a healthy donor.
Prognosis is excellent, although there is an association with autoimmune disease. Of note, selective IgA deficiency can complicate the diagnosis of one such condition, celiac disease, as the deficiency masks the high levels of certain IgA antibodies usually seen in celiac disease.
As opposed to the related condition CVID, selective IgA deficiency is not associated with an increased risk of cancer.
Patients with Selective IgA deficiency are at risk of anaphylaxis from blood transfusions. These patients should receive IgA free containing blood products and ideally blood from IgA-deficient donors.
Serology (detection on antibodies to a specific pathogen or antigen) is often used to diagnose viral diseases. Because XLA patients lack antibodies, these tests always give a negative result regardless of their real condition. This applies to standard HIV tests. Special blood tests (such as the western blot based test) are required for proper viral diagnosis in XLA patients.
It is not recommended and dangerous for XLA patients to receive live attenuated vaccines such as live polio, or the measles, mumps, rubella (MMR vaccine). Special emphasis is given to avoiding the oral live attenuated SABIN-type polio vaccine that has been reported to cause polio to XLA patients. Furthermore, it is not known if active vaccines in general have any beneficial effect on XLA patients as they lack normal ability to maintain immune memory.
XLA patients are specifically susceptible to viruses of the Enterovirus family, and mostly to: polio virus, coxsackie virus (hand, foot, and mouth disease) and Echoviruses. These may cause severe central nervous system conditions as chronic encephalitis, meningitis and death. An experimental anti-viral agent, pleconaril, is active against picornaviruses. XLA patients, however, are apparently immune to the Epstein-Barr virus (EBV), as they lack mature B cells (and so HLA co-receptors) needed for the viral infection. Patients with XLA are also more likely to have a history of septic arthritis.
It is not known if XLA patients are able to generate an allergic reaction, as they lack functional IgE antibodies.There is no special hazard for XLA patients in dealing with pets or outdoor activities. Unlike in other primary immunodeficiencies XLA patients are at no greater risk for developing autoimmune illnesses.
Agammaglobulinemia (XLA) is similar to the primary immunodeficiency disorder Hypogammaglobulinemia (CVID), and their clinical conditions and treatment are almost identical. However, while XLA is a congenital disorder, with known genetic causes, CVID may occur in adulthood and its causes are not yet understood.
XLA was also historically mistaken as Severe Combined Immunodeficiency (SCID), a much more severe immune deficiency ("Bubble boys").A strain of laboratory mouse, XID, is used to study XLA. These mice have a mutated version of the mouse Btk gene, and exhibit a similar, yet milder, immune deficiency as in XLA.
The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with telangiectasia and sometimes increased infections, and confirmed by specific laboratory abnormalities (elevated alpha-fetoprotein levels, increased chromosomal breakage or cell death of white blood cells after exposure to X-rays, absence of ATM protein in white blood cells, or mutations in each of the person’s ATM genes).
A variety of laboratory abnormalities occur in most people with A-T, allowing for a tentative diagnosis to be made in the presence of typical clinical features. Not all abnormalities are seen in all patients. These abnormalities include:
- Elevated and slowly increasing alpha-fetoprotein levels in serum after 2 years of age
- Immunodeficiency with low levels of immunoglobulins (especially IgA, IgG subclasses, and IgE) and low number of lymphocytes in the blood
- Chromosomal instability (broken pieces of chromosomes)
- Increased sensitivity of cells to x-ray exposure (cells die or develop even more breaks and other damage to chromosomes)
- Cerebellar atrophy on MRI scan
The diagnosis can be confirmed in the laboratory by finding an absence or deficiency of the ATM protein in cultured blood cells, an absence or deficiency of ATM function (kinase assay), or mutations in both copies of the cell’s ATM gene. These more specialized tests are not always needed, but are particularly helpful if a child’s symptoms are atypical.
In terms of diagnosis of "humoral immune deficiency" depends upon the following:
- Measure "serum immunoglobulin levels"
- B cell count
- Family medical history
There is a diagnostic test for AIE that looks for an antibody against the enterocyte. The diagnostic test contains the Western Blot which can identify the antibody IgG or IgA and with the immunohistochemistry can localize these antibodies. Endoscopy with biopsies of the colon, small colon, stomach, and other locations may be helpful in diagnosing. This test is done to look at the stomach and small intestines and to see what cells are infiltrating the digestive tract. There are also documented cases of autoimmune enteropathy where the auto-antibodies were undetectable and the diagnosis was made on the basis of clinical presentation and response to treatment.
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy
All individuals with A-T should have at least one comprehensive immunologic evaluation that measures the number and type of lymphocytes in the blood (T-lymphocytes and B-lymphocytes), the levels of serum immunoglobulins (IgG, IgA, and IgM) and antibody responses to T-dependent (e.g., tetanus, Hemophilus influenzae b) and T-independent (23-valent pneumococcal polysaccharide) vaccines. For the most part, the pattern of immunodeficiency seen in an A-T patient early in life (by age five) will be the same pattern seen throughout the lifetime of that individual. Therefore, the tests need not be repeated unless that individual develops more problems with infection. Problems with immunity sometimes can be overcome by immunization. Vaccines against common bacterial respiratory pathogens such as Hemophilus influenzae, pneumococci and influenza virus (the “flu”) are commercially available and often help to boost antibody responses, even in individuals with low immunoglobulin levels. If the vaccines do not work and the patient continues to have problems with infections, gamma globulin therapy (IV or subcutaneous infusions of antibodies collected from normal individuals) may be of benefit. A small number of people with A-T develop an abnormality in which one or more types of immunoglobulin are increased far beyond the normal range. In a few cases, the immunoglobulin levels can be increased so much that the blood becomes thick and does not flow properly. Therapy for this problem must be tailored to the specific abnormality found and its severity.
If an individual patient’s susceptibility to infection increases, it is important to reassess immune function in case deterioration has occurred and a new therapy is indicated. If infections are occurring in the lung, it is also important to investigate the possibility of dysfunctional swallow with aspiration into the lungs (see above sections under Symptoms: Lung Disease and Symptoms: Feeding, Swallowing and Nutrition.)
Most people with A-T have low lymphocyte counts in the blood. This problem seems to be relatively stable with age, but a rare number of people do have progressively decreasing lymphocyte counts as they get older. In the general population, very low lymphocyte counts are associated with an increased risk for infection. Such individuals develop complications from live viral vaccines (measles, mumps, rubella and chickenpox), chronic or severe viral infections, yeast infections of the skin and vagina, and opportunistic infections (such as pneumocystis pneumonia). Although lymphocyte counts are often as low in people with A-T, they seldom have problems with opportunistic infections. (The one exception to that rule is that problems with chronic or recurrent warts are common.) The number and function of T-lymphocytes should be re-evaluated if a person with A-T is treated with corticosteroid drugs such as prednisone for longer than a few weeks or is treated with chemotherapy for cancer. If lymphocyte counts are low in people taking those types of drugs, the use of prophylactic antibiotics is recommended to prevent opportunistic infections.
If the tests show significant abnormalities of the immune system, a specialist in immunodeficiency or infectious diseases will be able to discuss various treatment options. Absence of immunoglobulin or antibody responses to vaccine can be treated with replacement gamma globulin infusions, or can be managed with prophylactic antibiotics and minimized exposure to infection. If antibody function is normal, all routine childhood immunizations including live viral vaccines (measles, mumps, rubella and varicella) should be given. In addition, several “special” vaccines (that is, licensed but not routine for otherwise healthy children and young adults) should be given to decrease the risk that an A-T patient will develop lung infections. The patient and all household members should receive the influenza (flu) vaccine every fall. People with A-T who are less than two years old should receive three (3) doses of a pneumococcal conjugate vaccine (Prevnar) given at two month intervals. People older than two years who have not previously been immunized with Prevnar should receive two (2) doses of Prevnar. At least 6 months after the last Prevnar has been given and after the child is at least two years old, the 23-valent pneumococcal vaccine should be administered. Immunization with the 23-valent pneumococcal vaccine should be repeated approximately every five years after the first dose.
In people with A-T who have low levels of IgA, further testing should be performed to determine whether the IgA level is low or completely absent. If absent, there is a slightly increased risk of a transfusion reaction. “Medical Alert” bracelets are not necessary, but the family and primary physician should be aware that if there is elective surgery requiring red cell transfusion, the cells should be washed to decrease the risk of an allergic reaction.
People with A-T also have an increased risk of developing autoimmune or chronic inflammatory diseases. This risk is probably a secondary effect of their immunodeficiency and not a direct effect of the lack of ATM protein. The most common examples of such disorders in A-T include immune thrombocytopenia (ITP), several forms of arthritis, and vitiligo.
Nuclear factor-kappa B Essential Modulator (NEMO) deficiency syndrome is a rare type of primary immunodeficiency disease that has a highly variable set of symptoms and prognoses. It mainly affects the skin and immune system but has the potential to affect all parts of the body, including the lungs, urinary tract and gastrointestinal tract. It is a monogenetic disease caused by mutation in the IKBKG gene (IKKγ, also known as the NF-κB essential modulator, or NEMO). NEMO is the modulator protein in the IKK inhibitor complex that, when activated, phosphorylates the inhibitor of the NF-κB transcription factors allowing for the translocation of transcription factors into the nucleus.
The link between IKBKG mutations and NEMO deficiency was identified in 1999. IKBKG is located on the X chromosome and is X-linked therefore this disease predominantly affects males, However females may be genetic carriers of certain types of mutations. Other forms of the syndrome involving NEMO-related pathways can be passed on from parent to child in an autosomal dominant manner – this means that a child only has to inherit the faulty gene from one parent to develop the condition. This autosomal dominant type of NEMO deficiency syndrome can affect both boys and girls.
In terms of management for complement deficiency, immunosuppressive therapy should be used depending on the disease presented. A C1-INH concentrate can be used for angio-oedema (C1-INH deficiency).
Pneumococcus and haemophilus infections prevention can be taken via immunization for those with complement deficiency. Epsilon-aminocaproic acid could be used to treat hereditary C1-INH deficiency, though the possible side effect of intravascular thrombosis should be weighed.
Diagnosis is based on two biopsies of the skin, one submitted for routine H&E staining and one for immunofluorescence studies.
Non-effusive FIP is more difficult to diagnose than effusive FIP because the clinical signs tend to be more vague and varied: the list of differential diagnoses is therefore much longer. Non-effusive FIP diagnosis should be considered when the following criteria are met:
1. History: the cat is young (under 2 years old) and purebred: over 70% of cases of FIP are in pedigree kittens.
2. History: the cat experienced stress such as recent neutering or vaccination
3. History: the cat had an opportunity to become infected with FCoV, such as originating in a breeding or rescue cattery, or the recent introduction of a purebred kitten or cat into the household.
4. Clinical signs: the cat has become anorexic or is eating less than usual; has lost weight or failed to gain weight; has pyrexia of unknown origin; intra-ocular signs; icterus.
5. Biochemistry: hypergammaglobulinaemia; raised bilirubin without liver enzymes being raised.
6. Hematology: lymphopenia; non-regenerative—usually mild—anaemia.
7. Serology: the cat has a high antibody titre to FCoV: this parameter should be used with caution, because of the high prevalence of FCoV in breeding and rescue catteries.
Non-effusive FIP can be ruled out as a diagnosis if the cat is seronegative, provided the antibody test has excellent sensitivity. In a study which compared various commercially available in-house FCoV antibody tests, the FCoV Immunocomb (Biogal) was 100% sensitive; the Speed F-Corona rapid immunochromatographic (RIM) test (Virbac) was 92.4% sensitive and the FASTest feline infectious peritonitis (MegaCor Diagnostik) RIM test was 84.6% sensitive.
Diagnosis is typically obtained by an allergist or other licensed practitioner performing a cold test. During the cold test, a piece of ice is held against the forearm, typically for 3–4 minutes. A positive result is a specific looking mark of raised red hives. The hives may be the shape of the ice, or it may radiate from the contact area of the ice." However, while these techniques assist in diagnosis, they do not provide information about temperature and stimulation time thresholds at which patients will start to develop symptoms."which is essential because it can establish disease severity and monitor the effectiveness of treatment.
There is currently minimal therapeutic intervention available for BENTA disease. Patients are closely monitored for infections and for signs of monoclonal or oligoclonal B cell expansion that could indicate B cell malignancy. Splenectomy is unlikely to reduce B cell burden; peripheral blood B cell counts rose significantly in three patients who underwent the procedure. It remains to be determined whether immunosuppressive drugs, including B cell-depleting drugs such as rituximab, could be effective for treating BENTA disease.