Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The diagnosis of hyper IgM syndrome can be done via the following methods and tests:
- MRI
- Chest radiography
- Pulmonary function test
- Lymph node test
- Laboratory test (to measure CD40)
When suspected, the diagnosis can be confirmed by laboratory measurement of IgA level in the blood. SigAD is an IgA level < 7 mg/dL with normal IgG and IgM levels (reference range 70–400 mg/dl for adults; children somewhat less).
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
XLA diagnosis usually begins due to a history of recurrent infections, mostly in the respiratory tract, through childhood. This is due to humoral immunodeficiency. The diagnosis is probable when blood tests show the complete lack of circulating B cells (determined by the B cell marker CD19 and/or CD20), as well as low levels of all antibody classes, including IgG, IgA, IgM, IgE and IgD.
When XLA is suspected, it is possible to do a Western Blot test to determine whether the Btk protein is being expressed. Results of a genetic blood test confirm the diagnosis and will identify the specific Btk mutation, however its cost prohibits its use in routine screening for all pregnancies. Women with an XLA patient in their family should seek genetic counseling before pregnancy.Although the symptoms of a XLA and other primary immune diseases (PID) include repeated and often severe infections, the average time for a diagnosis of a PID can be up to 10 years.
Five "types" of hyper IgM syndrome have been characterized:
- Hyper-IgM syndrome type 1 (X-linked), characterized by mutations of the "CD40LG" gene. In this type, T cells cannot tell B cells to switch classes.
- Hyper-IgM syndrome type 2 (autosomal recessive), characterized by mutations of the "AICDA" gene. In this type, B cells cannot recombine genetic material to change heavy chain production
- Hyper-IgM syndrome type 3 characterized by mutations of the "CD40" gene. In this type, B cells cannot receive the signal from T cells to switch classes.
- Hyper-IgM syndrome type 4 which is a defect in class switch recombination downstream of the AICDA gene that does not impair Somatic Hypermutation.
- Hyper-IgM syndrome type 5 characterized by mutations of the "UNG" gene.
In terms of diagnosis of "humoral immune deficiency" depends upon the following:
- Measure "serum immunoglobulin levels"
- B cell count
- Family medical history
Prognosis is excellent, although there is an association with autoimmune disease. Of note, selective IgA deficiency can complicate the diagnosis of one such condition, celiac disease, as the deficiency masks the high levels of certain IgA antibodies usually seen in celiac disease.
As opposed to the related condition CVID, selective IgA deficiency is not associated with an increased risk of cancer.
Patients with Selective IgA deficiency are at risk of anaphylaxis from blood transfusions. These patients should receive IgA free containing blood products and ideally blood from IgA-deficient donors.
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy
Serology (detection on antibodies to a specific pathogen or antigen) is often used to diagnose viral diseases. Because XLA patients lack antibodies, these tests always give a negative result regardless of their real condition. This applies to standard HIV tests. Special blood tests (such as the western blot based test) are required for proper viral diagnosis in XLA patients.
It is not recommended and dangerous for XLA patients to receive live attenuated vaccines such as live polio, or the measles, mumps, rubella (MMR vaccine). Special emphasis is given to avoiding the oral live attenuated SABIN-type polio vaccine that has been reported to cause polio to XLA patients. Furthermore, it is not known if active vaccines in general have any beneficial effect on XLA patients as they lack normal ability to maintain immune memory.
XLA patients are specifically susceptible to viruses of the Enterovirus family, and mostly to: polio virus, coxsackie virus (hand, foot, and mouth disease) and Echoviruses. These may cause severe central nervous system conditions as chronic encephalitis, meningitis and death. An experimental anti-viral agent, pleconaril, is active against picornaviruses. XLA patients, however, are apparently immune to the Epstein-Barr virus (EBV), as they lack mature B cells (and so HLA co-receptors) needed for the viral infection. Patients with XLA are also more likely to have a history of septic arthritis.
It is not known if XLA patients are able to generate an allergic reaction, as they lack functional IgE antibodies.There is no special hazard for XLA patients in dealing with pets or outdoor activities. Unlike in other primary immunodeficiencies XLA patients are at no greater risk for developing autoimmune illnesses.
Agammaglobulinemia (XLA) is similar to the primary immunodeficiency disorder Hypogammaglobulinemia (CVID), and their clinical conditions and treatment are almost identical. However, while XLA is a congenital disorder, with known genetic causes, CVID may occur in adulthood and its causes are not yet understood.
XLA was also historically mistaken as Severe Combined Immunodeficiency (SCID), a much more severe immune deficiency ("Bubble boys").A strain of laboratory mouse, XID, is used to study XLA. These mice have a mutated version of the mouse Btk gene, and exhibit a similar, yet milder, immune deficiency as in XLA.
Patients show markedly low immunoglobulin levels of IgG, IgA, and IgM.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
The diagnosis of T cell deficiency can be ascertained in those individuals with this condition via the following:
- Delayed hypersensitivity skin test
- T cell count
- Detection via culture(infection)
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
Complete or partial deficiency
- "Complete insufficiency" of T cell function can result from hereditary conditions (also called primary conditions) such as severe combined immunodeficiency (SCID), Omenn syndrome, and cartilage–hair hypoplasia.
- "Partial insufficiencies" of T cell function include acquired immune deficiency syndrome (AIDS), and hereditary conditions such as DiGeorge syndrome (DGS), chromosomal breakage syndromes (CBSs), and B-cell and T-cell combined disorders such as ataxia-telangiectasia (AT) and Wiskott–Aldrich syndrome (WAS).
- "Primary (or hereditary) immunodeficiencies" of T cells include some that cause complete insufficiency of T cells, such as severe combined immunodeficiency (SCID), Omenn syndrome, and Cartilage–hair hypoplasia.
- "Secondary causes" are more common than primary ones. Secondary (or acquired) causes are mainly:
A new investigation has identified a seemingly successful treatment for LRBA deficiency by targeting CTLA4. Abatacept, an approved drug for rheumatoid arthritis, mimics the function of CTLA4 and has found to reverse life-threatening symptoms. The study included nine patients that exhibited improved clinical status and halted inflammatory conditions with minimal infectious or autoimmune complications. The study also suggests that therapies like chloroquine or hydroxychloroquine, which inhibit lysosomal degradation, may prove to be effective, as well. Larger cohorts are required to further validate these therapeutic approaches as effective long-term treatments for this disorder.
The cause of immunodeficiency varies depending on the nature of the disorder. The cause can be either genetic or acquired by malnutrition and poor sanitary conditions. Only for some genetic causes, the exact genes are known. Although there is no true discrimination to who this disease affects, the genes are passed from mother to child, and on occasion from father to child. Women tend not to show symptoms due to their second X chromosome not having the mutation while man are symptomatic, due to having one X chromosome.
There is currently minimal therapeutic intervention available for BENTA disease. Patients are closely monitored for infections and for signs of monoclonal or oligoclonal B cell expansion that could indicate B cell malignancy. Splenectomy is unlikely to reduce B cell burden; peripheral blood B cell counts rose significantly in three patients who underwent the procedure. It remains to be determined whether immunosuppressive drugs, including B cell-depleting drugs such as rituximab, could be effective for treating BENTA disease.
The diagnosis is made on the basis of clinical parameters, the peripheral blood smear, and low immunoglobulin levels. Typically, IgM levels are low, IgA levels are elevated, and IgE levels may be elevated; paraproteins are occasionally observed. Skin immunologic testing (allergy testing) may reveal hyposensitivity. Not all patients have a positive family history of the disorder; new mutations do occur. Often, leukemia may be suspected on the basis of low platelets and infections, and bone marrow biopsy may be performed. Decreased levels of Wiskott-Aldrich syndrome protein and/or confirmation of a causative mutation provides the most definitive diagnosis.
Sequence analysis can detect the WAS-related disorders of Wiskott–Aldrich syndrome, XLT, and XLN. Sequence analysis of the "WASp" gene can detect about 98% of mutations in males and 97% of mutations in female carriers. Because XLT and XLN symptoms may be less severe than full WAS and because female carriers are usually asymptomatic, clinical diagnosis can be elusive. In these cases, genetic testing can be instrumental in diagnosis of WAS-related disorders.
The majority of patient peripheral blood mononucleated cells are polyclonal naïve mature B cells, with a significant increase in immature, transitional B cell numbers (identified as CD10+). Percentages of circulating class-switched and memory B cells are very low, and "in vitro" studies show poor B cell differentiation and immunoglobulin secretion. Serum IgM is low in most patients, while total IgG and IgA may be on the low end of normal. Patients demonstrate defective antibody production against T cell-independent, polysaccharide-based vaccines. Some patients may not mount protective antibody titers to other vaccines, such as measles and varicella zoster virus.
T cell counts are generally within or just above the normal range. "In vitro" stimulation of T cells demonstrates that both CD4+ and CD8+ T cells are less responsive than normal, suggesting mild T cell anergy in patients.
A diagnosis of leukemia can generally be ruled out in these patients based on the unremarkable appearance of small resting lymphocytes in the blood; however, patients must be closely monitored for any signs of monoclonal or oligoclonal B cell expansion because there may be an increased risk for B cell malignancy. Specifically, one patient with BENTA disease was reported as having developed B cell chronic lymphocytic leukemia (B-CLL) as an adult.
Jin et al. (2004) employ a numerical grading of severity:
- 0.5: intermittent thrombocytopenia
- 1.0: thrombocytopenia and small platelets (microthrombocytopenia)
- 2.0: microthrombocytopenia plus normally responsive eczema or occasional upper respiratory tract infections
- 2.5: microthrombocytopenia plus therapy-responsive but severe eczema or airway infections requiring antibiotics
- 3.0: microthrombocytopenia plus both eczema and airway infections requiring antibiotics
- 4.0: microthrombocytopenia plus eczema continuously requiring therapy and/or severe or life-threatening infections
- 5.0: microthrombocytopenia plus autoimmune disease or malignancy
Combined immunodeficiencies (or combined immunity deficiency) are immunodeficiency disorders that involve multiple components of the immune system, including both humoral immunity and cell-mediated immunity.
This category includes conditions such as bare lymphocyte syndrome, as well as severe combined immunodeficiency.
ICD-9 divides immune deficiencies into three categories: humoral (279.0), cell-mediated (279.1), and combined (279.2). However, ICD-10 does not include a category for cell-mediated immune dysfunction (antibody is D80, and combined is D81), thus grouping T-cell mediated conditions with combined conditions.
Diagnosis
Originally NEMO deficiency syndrome was thought to be a combination of Ectodermal Dysplasia (ED) and a lack of immune function, but is now understood to be more complex disease. NEMO Deficiency Syndrome may manifest itself in the form of several different diseases dependent upon mutations of the IKBKG gene such as Incontinentia pigmenti or Ectodermal dysplasia.
The clinical presentation of NEMO deficiency is determined by three main symptoms:
1. Susceptibility to pyogenic infections in the form of severe local inflammation
2. Susceptibility to mycobacterial infection
3. Symptoms of Ectodermal Dysplasia
To determine whether or not patient has NEMO deficiency, an immunologic screen to test immune system response to antigen may be used although a genetic test is the only way to be certain as many individuals respond differently to the immunological tests.
Commonly Associated Diseases
NEMO deficiency syndrome may present itself as Incontinentia pigmenti or Ectodermal dysplasia depending on the type of genetic mutation present, such as if the mutation results in the complete loss of gene function or a point mutation.
Amorphic genetic mutations in the IKBKG gene, which result in the loss of gene function, typically present themselves as Incontinetia Pigmenti (IP). Because loss of NEMO function is lethal, only heterozygous females or males with XXY karyotype or mosaicism for this gene survive and exhibit symptoms of Incontinetia Pigmenti, such as skin lesions and abnormalities in hair, teeth, and nails. There are a variety of mutations that may cause the symptoms of IP, however, they all involve the deletion of exons on the IKBKG gene.
Hypomorphic genetic mutations in the IKBKG gene, resulting in a partial loss of gene function, cause the onset of Anhidrotic ectodermal dysplasia with Immunodeficiency (EDA-IP). The lack of NEMO results in a decreased levels of NF-κB transcription factor translocation and gene transcription, which in turn leads to a low level of immunoglobulin production. Because NF-κB translocation is unable to occur without proper NEMO function, the cell signaling response to immune mediators such as IL-1β, IL-18, and LPS are ineffective thus leading to a compromised immune response to various forms of bacterial infections.
Treatment
The aim of treatment is to prevent infections so children will usually be started on immunoglobulin treatment. Immunoglobulin is also known as IgG or antibody. It is a blood product and is given as replacement for people who are unable to make their own antibodies. It is the mainstay of treatment for patients affected by primary antibody deficiency. In addition to immunoglobulin treatment, children may need to take antibiotics or antifungal medicines to prevent infections or treat them promptly when they occur. Regular monitoring and check-ups will help to catch infections early. If an autoimmune response occurs, this can be treated with steroid and/or biologic medicines to damp down the immune system so relieving the symptoms.
In some severely affected patients, NEMO deficiency syndrome is treated using a bone marrow or blood stem cell transplant. The aim is to replace the faulty immune system with an immune system from a healthy donor.
This form usually lessens in severity within two years of diagnosis.
The use of prophylactic antibiotics has been proposed.
See article at BioMed Central site:
Isolated primary immunoglobulin M deficiency (or selective IgM immunodeficiency (SIgMD)) is a poorly defined dysgammaglobulinemia characterized by decreased levels of IgM while levels of other immunoglobulins are normal. The immunodeficiency has been associated with some clinical disorders including recurrent infections, atopy, Bloom's syndrome, celiac disease, systemic lupus erythematosus and malignancy, but, surprisingly, SIgMD seems to also occur in asymptomatic individuals. High incidences of recurrent upper respiratory tract infections (77%), asthma (47%) and allergic rhinitis (36%) have also been reported. SIgMD seems to be a particularly rare antibody deficiency with a reported prevalence between 0.03% (general population) and 0.1% (hospitalized patients).
The cause of selective IgM deficiency remains unclear, although various mechanisms have been proposed, such as an increase in regulatory T cell functions, defective T helper cell functions and impaired terminal differentiation of B lymphocytes into IgM-secreting cells among others. It is however puzzling that class switching seems to happen normally (serum levels of other antibodies are normal), while dysfunctioning of IgM synthesis is expected to occur together with abnormalities in other immunoglobulins. Notwithstanding a clear pathogenesis and commonly accepted definition, a cutoff for SIgMD could be the lower limit of the serum IgM reference range, such as 43 mg/dL in adults or even 20 mg/dL.
Elevated IgE is the hallmark of HIES. An IgE level greater than 2,000 IU/mL is often considered diagnostic. However, patients younger than 6 months of age may have very low to non-detectable IgE levels. Eosinophilia is also a common finding with greater than 90% of patients having eosinophil elevations greater than two standard deviations above the normal mean. Genetic testing is available for "STAT3" (Job's Syndrome), "DOCK8 (DOCK8 Immunodeficiency or DIDS)", "PGM3" (PGM3 deficiency), "SPINK5" (Netherton Syndrome - NTS), and "TYK2" genetic defects.