Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
PCR-based screening methodologies are in the process of development. Although they speed up detection immensely, they are costly and the reliability of the tests is questionable due to false positives. Nested arbitrary PCR (ARB-PCR) was used during a 2007 CRE outbreak at the University of Virginia Medical Center to identify the specific "bla" KPC plasmid involved in the transmission of the infection, and researchers suggest that ARB-PCR may also be used to identify other methods of CRE spread.
There are multiple national and international monitoring programs for drug-resistant threats, including methicillin-resistant "Staphylococcus aureus" (MRSA), vancomycin-resistant "S. aureus" (VRSA), extended spectrum beta-lactamase (ESBL), vancomycin-resistant "Enterococcus" (VRE), multidrug-resistant "A. baumannii" (MRAB).
ResistanceOpen is an online global map of antimicrobial resistance developed by HealthMap which displays aggregated data on antimicrobial resistance from publicly available and user submitted data. The website can display data for a 25-mile radius from a location. Users may submit data from antibiograms for individual hospitals or laboratories. European data is from the EARS-Net (European Antimicrobial Resistance Surveillance Network), part of the ECDC.
ResistanceMap is a website by the Center for Disease Dynamics, Economics & Policy and provides data on antimicrobial resistance on a global level.
Antibiotic treatment duration should be based on the infection and other health problems a person may have. For many infections once a person has improved there is little evidence that stopping treatment causes more resistance. Some therefore feel that stopping early may be reasonable in some cases. Other infections, however, do require long courses regardless of whether a person feels better.
The disc diffusion method can be used by hospital laboratories to screen for CRE. In this technique, antibiotic discs are placed onto plates of Mueller Hinton agar that have already been inoculated with the sample strain. The plates are then incubated overnight at 37 °C. Following incubation, the zones of inhibition surrounding the various antibiotic discs are measured and compared with Clinical and Laboratory Standard Institute guidelines. Identification of KPCs, MBLs and OXAs can be achieved by demonstrating synergistic inhibition with phenyl boronic acid, EDTA or neither, respectively.
In a Thailand-based study of CRE in hospital settings, carbapenem resistance was defined as any strain that shows resistance to at least one of three carbapenem antibiotics tested.
Screening for VRE can be accomplished in a number of ways. For inoculating peri-rectal/anal swabs or stool specimens directly, one method uses bile esculin azide agar plates containing 6 µg/ml of vancomycin. Black colonies should be identified as an enterococcus to species level and further confirmed as vancomycin resistant by an MIC method before reporting as VRE.
Vancomycin resistance can be determined for enterococcal colonies available in pure culture by inoculating a suspension of the organism onto a commercially available brain heart infusion agar (BHIA) plate containing 6 µg/ml vancomycin. The National Committee for Clinical Laboratory Standards (NCCLS) recommends performing a vancomycin MIC test and also motility and pigment production tests to distinguish species with acquired resistance (vanA and vanB) from those with vanC intrinsic resistance.
For isolates with a Vancomycin MIC , an alternative to Vancomycin should be used. The approach is to treat with at least one agent to which VISA/VRSA is known to be susceptible by "in vitro" testing. The agents that are used include daptomycin, linezolid, telavancin, ceftaroline, quinupristin–dalfopristin. For people with MRSA bacteremia in the setting of vancomycin failure the IDSA recommends high-dose daptomycin, if the isolate is susceptible, in combination with another agent (e.g. gentamicin, rifampin, linezolid, TMP-SMX, or a beta-lactam antibiotic).
The diagnosis of vancomycin-resistant Staphylococcus aureus can be done with disk diffusion(and VA screen plate)
To limit the development of antimicrobial resistance, it has been suggested to:
- Use the appropriate antimicrobial for an infection; e.g. no antibiotics for viral infections
- Identify the causative organism whenever possible
- Select an antimicrobial which targets the specific organism, rather than relying on a broad-spectrum antimicrobial
- Complete an appropriate duration of antimicrobial treatment (not too short and not too long)
- Use the correct dose for eradication; subtherapeutic dosing is associated with resistance, as demonstrated in food animals.
The medical community relies on education of its prescribers, and self-regulation in the form of appeals to voluntary antimicrobial stewardship, which at hospitals may take the form of an antimicrobial stewardship program. It has been argued that depending on the cultural context government can aid in educating the public on the importance of restrictive use of antibiotics for human clinical use, but unlike narcotics, there is no regulation of its use anywhere in the world at this time. Antibiotic use has been restricted or regulated for treating animals raised for human consumption with success, in Denmark for example.
Infection prevention is the most efficient strategy of prevention of an infection with a MDR organism within a hospital, because there are few alternatives to antibiotics in the case of an extensively resistant or panresistant infection; if an infection is localized, removal or excision can be attempted (with MDR-TB the lung for example), but in the case of a systemic infection only generic measures like boosting the immune system with immunoglobulins may be possible. The use of bacteriophages (viruses which kill bacteria) has no clinical application at the present time.
It is necessary to develop new antibiotics over time since the selection of resistant bacteria cannot be prevented completely. This means with every application of a specific antibiotic, the survival of a few bacteria which already got a resistance gene against the substance is promoted, and the concerning bacterial population amplifies. Therefore, the resistance gene is farther distributed in the organism and the environment, and a higher percentage of bacteria does no longer respond to a therapy with this specific antibiotic.
"Biological cost" or "metabolic price" is a measure of the increased energy metabolism required to achieve a function.
Drug resistance has a high metabolic price in pathogens for which this concept is relevant (bacteria, endoparasites, and tumor cells.) In viruses, an equivalent "cost" is genomic complexity.
In most countries, fluoroquinolones are approved for use in children only under narrowly-defined circumstances, owing in part to the observation of high rates of musculoskeletal adverse events in fluoroquinolone treated juvenile animals. In the UK, the prescribing indications for fluoroquinolones for children are severely restricted. Only inhalant anthrax and pseudomonal infections in cystic fibrosis infections are licensed indications in the UK due to ongoing safety concerns. In a study comparing the safety and efficacy of levofloxacin to that of azithromycin or ceftriaxone in 712 children with community-acquired pneumonia, serious adverse events were experienced by 6% of those treated with levofloxacin and 4% of those treated with comparator antibiotics. Most of these were considered by the treating physician to be unrelated or doubtfully related to the study drug. Two deaths were observed in the levofloxacin group, neither of which was thought to be treatment-related. Spontaneous reports to the U.S. FDA Adverse Effects Reporting System at the time of the 20 September 2011 U.S. FDA Pediatric Drugs Advisory Committee included musculoskeletal events (39, including 5 cases of tendon rupture) and central nervous system events (19, including 5 cases of seizures) as the most common spontaneous reports between April 2005 and March 2008. An estimated 130,000 pediatric prescriptions for levofloxacin were filled on behalf of 112,000 pediatric patients during that period.
Meta-analyses conclude that fluoroquinolones pose little or no additional risk to children compared to other antibiotic classes.
Fluoroquinolines use in children may be appropriate when the infection is caused by multidrug-resistant bacteria, or when alternative treatment options require parenteral administration and oral therapy is preferred.
The chances of drug resistance can sometimes be minimized by using multiple drugs simultaneously. This works because individual mutations can be independent and may tackle only one drug at a time; if the individuals are still killed by the other drugs, then the mutations cannot persist. This was used successfully in tuberculosis. However, cross resistance where mutations confer resistance to two or more treatments can be problematic.
For antibiotic resistance, which represents a widespread problem nowadays, drugs designed to block the mechanisms of bacterial antibiotic resistance are used. For example, bacterial resistance against beta-lactam antibiotics (such as penicillins and cephalosporins) can be circumvented by using antibiotics such as nafcillin that are not susceptible to destruction by certain beta-lactamases (the group of enzymes responsible for breaking down beta-lactams). Beta-lactam bacterial resistance can also be dealt with by administering beta-lactam antibiotics with drugs that block beta-lactamases such as clavulanic acid so that the antibiotics can work without getting destroyed by the bacteria first. Recently, researchers have recognized the need for new drugs that inhibit bacterial efflux pumps, which cause resistance to multiple antibiotics such as beta-lactams, quinolones, chloramphenicol, and trimethoprim by sending molecules of those antibiotics out of the bacterial cell. Sometimes a combination of different classes of antibiotics may be used synergistically; that is, they work together to effectively fight bacteria that may be resistant to one of the antibiotics alone.
Destruction of the resistant bacteria can also be achieved by phage therapy, in which a specific bacteriophage (virus that kills bacteria) is used.
There is research being done using antimicrobial peptides. In the future, there is a possibility that they might replace novel antibiotics.
Fluoroquinolones are often used for genitourinary infections and are widely used in the treatment of hospital-acquired infections associated with urinary catheters. In community-acquired infections, they are recommended only when risk factors for multidrug resistance are present or after other antibiotic regimens have failed. However, for serious acute cases of pyelonephritis or bacterial prostatitis where the patient may need to be hospitalised, fluoroquinolones are recommended as first-line therapy.
Due to sickle-cell disease patients' being at increased risk for developing osteomyelitis from the "Salmonella "genus, fluoroquinolones are the "drugs of choice" due to their ability to enter bone tissue without chelating it, as tetracyclines are known to do.
Fluoroquinolones are featured prominently in guidelines for the treatment of hospital-acquired pneumonia.
The prime example for MDR against antiparasitic drugs is malaria. "Plasmodium vivax" has become chloroquine and sulfadoxine-pyrimethamine resistant a few decades ago, and as of 2012 artemisinin-resistant Plasmodium falciparum has emerged in western Cambodia and western Thailand.
"Toxoplasma gondii" can also become resistant to artemisinin, as well as atovaquone and sulfadiazine, but is not usually MDR
Antihelminthic resistance is mainly reported in the veterinary literature, for example in connection with the practice of livestock drenching and has been recent focus of FDA regulation.
Common situations in which antibiotics are overused include the following:
- Apparent viral respiratory illness in children should not be treated with antibiotics. If there is a diagnosis of bacterial infection, then antibiotics may be used.
- When children with ear tubes get ear infections, they should have antibiotic eardrops put into their ears to go to the infection rather than having oral antibiotics which are more likely to have unwanted side effects.
- Swimmer's ear should be treated with antibiotic eardrops, not oral antibiotics.
- Sinusitis should not be treated with antibiotics because it is usually caused by a virus, and even when it is caused by a bacteria, antibiotics are not indicated except in atypical circumstances as it usually resolves without treatment.
- Viral conjunctivitis should not be treated with antibiotics. Antibiotics should only be used with confirmation that a patient has bacterial conjunctivitis.
- Older persons often have bacteria in their urine which is detected in routine urine tests, but unless the person has the symptoms of a urinary tract infection, antibiotics should not be used in response.
- Eczema should not be treated with oral antibiotics. Dry skin can be treated with lotions or other symptom treatments.
- The use of topical antibiotics to treat surgical wounds does not reduce infection rates in comparison with non-antibiotic ointment or no ointment at all.
Antibiotics have no effect on viral infections such as the common cold. They are also ineffective against sore throats, which are usually viral and self-resolving. Most cases of bronchitis (90–95%) are viral as well, passing after a few weeks—the use of antibiotics against bronchitis is superfluous and can put the patient at risk of suffering adverse reactions.
Official guidelines by the American Heart Association for dental antibiotic prophylaxis call for the administration of antibiotics to prevent infective endocarditis. Though the current (2007) guidelines dictate more restricted antibiotic use, many dentists and dental patients follow the 1997 guidelines instead, leading to overuse of antibiotics.
A study by Imperial College London in February 2017 found that of 20 online websites, 9 would provide antibiotics (illegally) without a prescription to UK residents.
The Gonorrhea bacterium Neisseria gonorrhoeae has developed antibiotic resistance to many antibiotics.
The bacteria was first identified in 1879, although some Biblical scholars believe that references to the disease can be found as early as Parshat Metzora of the Old Testament.
In the 1940s effective treatment with penicillin became available, but by the 1970s resistant strains predominated. Resistance to penicillin has developed through two mechanisms: chromasomally mediated resistance (CMRNG) and penicillinase-mediated resistance (PPNG). CMRNG involves step wise mutation of penA, which codes for the penicillin-binding protein (PBP-2); mtr, which encodes an efflux pump that removes penicillin from the cell; and penB, which encodes the bacterial cell wall porins. PPNG involves the acquisition of a plasmid-borne beta-lactamase. "N. gonorrheoea" has a high affinity for horizontal gene transfer, and as a result, the existence of any strain resistant to a given drug could spread easily across strains.
Fluoroquinolones were a useful next-line treatment until resistance was achieved through efflux pumps and mutations to the gyrA gene, which encodes DNA gyrase. Third-generation cephalosporins have been used to treat gonorrhoea since 2007, but resistant strains have emerged. As of 2010, the recommended treatment is a single 250 mg intramuscular injection of ceftriaxone, sometimes in combination with azithromycin or doxycycline. However, certain strains of "N. gonorrhoeae" can be resistant to antibiotics usually that are normally used to treat it. These include: cefixime (an oral cephalosporin), ceftriaxone (an injectable cephalosporin), azithromycin, aminoglycosides, and tetracycline.
Cephalosporin use is a risk factor for colonization and infection by VRE, and restriction of cephalosporin usage has been associated with decreased VRE infection and transmission in hospitals. "Lactobacillus rhamnosus" GG (LGG), a strain of "L. rhamnosus", was used successfully for the first time to treat gastrointestinal carriage of VRE. In the US, linezolid is commonly used to treat VRE.
Due to the importance of disease caused by "S. pneumoniae" several vaccines have been developed to protect against invasive infection. The World Health Organization recommend routine childhood pneumococcal vaccination; it is incorporated into the childhood immunization schedule in a number of countries including the United Kingdom, United States, and South Africa.
Depending on the nature of infection an appropriate sample is collected for laboratory identification. Pneumococci are typically gram-positive cocci seen in pairs or chains. When cultured on blood agar plates with added optochin antibiotic disk they show alpha-hemolytic colonies and a clear zone of inhibition around the disk indicating sensitivity to the antibiotic. Pneumococci are also bile soluble. Just like other streptococci they are catalase-negative. A Quellung test can identify specific capsular polysaccharides.
Pneumococcal antigen (cell wall C polysaccharide) may be detected in various body fluids. Older detection kits, based on latex agglutination, added little value above Gram staining and were occasionally false-positive. Better results are achieved with rapid immunochromatography, which has a sensitivity (identifies the cause) of 70–80% and >90% specificity (when positive identifies the actual cause) in pneumococcal infections. The test was initially validated on urine samples but has been applied successfully to other body fluids. Chest X-rays can also be conducted to confirm inflammation though are not specific to the causative agent.
There are several ways that drug resistance to TB, and drug resistance in general, can be prevented:
1. Rapid diagnosis & treatment of TB: One of the greatest risk factors for drug resistant TB is problems in treatment and diagnosis, especially in developing countries. If TB is identified and treated soon, drug resistance can be avoided.
2. Completion of treatment: Previous treatment of TB is an indicator of MDR TB. If the patient does not complete his/her antibiotic treatment, or if the physician does not prescribe the proper antibiotic regimen, resistance can develop. Also, drugs that are of poor quality or less in quantity, especially in developing countries, contribute to MDR TB.
3. Patients with HIV/AIDS should be identified and diagnosed as soon as possible. They lack the immunity to fight the TB infection and are at great risk of developing drug resistance.
4. Identify contacts who could have contracted TB: i.e. family members, people in close contact, etc.
5. Research: Much research and funding is needed in the diagnosis, prevention and treatment of TB and MDR TB.
"Opponents of a universal tuberculosis treatment, reasoning from misguided notions of cost-effectiveness, fail to acknowledge that MDRTB is not a disease of poor people in distant places. The disease is infectious and airborne. Treating only one group of patients looks inexpensive in the short run, but will prove disastrous for all in the long run."- Paul Farmer
Bacteremia is most commonly diagnosed by blood culture, in which a sample of blood drawn from the vein by needle puncture is allowed to incubate with a medium that promotes bacterial growth. If bacteria are present in the bloodstream at the time the sample is obtained, the bacteria will multiply and can thereby be detected.
Any bacteria that incidentally find their way to the culture medium will also multiply. For example, if the skin is not adequately cleaned before needle puncture, contamination of the blood sample with normal bacteria that live on the surface of the skin can occur. For this reason, blood cultures must be drawn with great attention to sterile process. The presence of certain bacteria in the blood culture, such as S"taphylococcus aureus", "Streptococcus pneumoniae", and "Escherichia coli" almost never represent a contamination of the sample. On the other hand, contamination may be more highly suspected if organisms like "Staphylococcus epidermidis" or "Propionibacterium acnes" grow in the blood culture.
Two blood cultures drawn from separate sites of the body are often sufficient to diagnose bacteremia. Two out of two cultures growing the same type of bacteria usually represents a real bacteremia, particularly if the organism that grows is not a common contaminant. One out of two positive cultures will usually prompt a repeat set of blood cultures to be drawn to confirm whether a contaminant or a real bacteremia is present. The patient's skin is typically cleaned with an alcohol-based product prior to drawing blood to prevent contamination. Blood cultures may be repeated at intervals to determine if persistent — rather than transient — bacteremia is present.
Prior to drawing blood cultures, a thorough patient history should be taken with particular regard to presence of both fevers and chills, other focal signs of infection such as in the skin or soft tissue, a state of immunosuppression, or any recent invasive procedures.
Ultrasound of the heart is recommended in all those with bacteremia due to "Staphylococcus aureus" to rule out infectious endocarditis.
Usually, multidrug-resistant tuberculosis can be cured with long treatments of second-line drugs, but these are more expensive than first-line drugs and have more adverse effects. The treatment and prognosis of MDR-TB are much more akin to those for cancer than to those for infection. MDR-TB has a mortality rate of up to 80%, which depends on a number of factors, including
1. How many drugs the organism is resistant to (the fewer the better)
2. How many drugs the patient is given (patients treated with five or more drugs do better)
3. Whether an injectable drug is given or not (it should be given for the first three months at least)
4. The expertise and experience of the physician responsible
5. How co-operative the patient is with treatment (treatment is arduous and long, and requires persistence and determination on the part of the patient)
6. Whether the patient is HIV positive or not (HIV co-infection is associated with an increased mortality).
The majority of patients suffering from multi-drug-resistant tuberculosis do not receive treatment, as they are found in underdeveloped countries or in poverty. Denial of treatment remains a difficult human rights issue, as the high cost of second-line medications often precludes those who cannot afford therapy.
A study of cost-effective strategies for tuberculosis control supported three major policies. First, the treatment of smear-positive cases in DOTS programs must be the foundation of any tuberculosis control approach, and should be a basic practice for all control programs. Second, there is a powerful economic case for treating smear-negative and extra-pulmonary cases in DOTS programs along with treating smear-negative and extra-pulmonary cases in DOTS programs as a new WHO “STOP TB” approach and the second global plan for tuberculosis control. Last, but not least, the study shows that significant scaling up of all interventions is needed in the next 10 years if the millennium development goal and related goals for tuberculosis control are to be achieved. If the case detection rate can be improved, this will guarantee that people who gain access to treatment facilities are covered and that coverage is widely distributed to people who do not now have access.
In general, treatment courses are measured in months to years; MDR-TB may require surgery, and death rates remain high despite optimal treatment. However, good outcomes for patients are still possible.
The treatment of MDR-TB must be undertaken by physicians experienced in the treatment of MDR-TB. Mortality and morbidity in patients treated in non-specialist centers are significantly higher to those of patients treated in specialist centers. Treatment of MDR-TB must be done on the basis of sensitivity testing: it is impossible to treat such patients without this information. When treating a patient with suspected MDR-TB, pending the result of laboratory sensitivity testing, the patient could be started on SHREZ (Streptomycin+ isonicotinyl Hydrazine+ Rifampicin+Ethambutol+ pyraZinamide) and moxifloxacin with cycloserine. There is evidence that previous therapy with a drug for more than a month is associated with diminished efficacy of that drug regardless of "in vitro" tests indicating susceptibility. Hence, a detailed knowledge of the treatment history of each patient is essential. In addition to the obvious risks (i.e., known exposure to a patient with MDR-TB), risk factors for MDR-TB include HIV infection, previous incarceration, failed TB treatment, failure to respond to standard TB treatment, and relapse following standard TB treatment.
A gene probe for "rpoB" is available in some countries. This serves as a useful marker for MDR-TB, because isolated RMP resistance is rare (except when patients have a history of being treated with rifampicin alone). If the results of a gene probe ("rpoB") are known to be positive, then it is reasonable to omit RMP and to use SHEZ+MXF+cycloserine. The reason for maintaining the patient on INH is that INH is so potent in treating TB that it is foolish to omit it until there is microbiological proof that it is ineffective (even though isoniazid resistance so commonly occurs with rifampicin resistance).
When sensitivities are known and the isolate is confirmed as resistant to both INH and RMP, five drugs should be chosen in the following order (based on known sensitivities):
- an aminoglycoside (e.g., amikacin, kanamycin) or polypeptide antibiotic (e.g., capreomycin)
- pyrazinamide
- ethambutol
- a fluoroquinolone (e.g., moxifloxacin (ciprofloxacin) should no longer be used);
- rifabutin
- cycloserine
- a thioamide: prothionamide or ethionamide
- PAS
- a macrolide: e.g., clarithromycin
- linezolid
- high-dose INH (if low-level resistance)
- interferon-γ
- thioridazine
- Ampicillin
"Note:" Drugs placed nearer the top of the list are more effective and less toxic; drugs placed nearer the bottom of the list are less effective or more toxic, or more difficult to obtain.
In general, resistance to one drug within a class means resistance to all drugs within that class, but a notable exception is rifabutin: Rifampicin-resistance does not always mean rifabutin-resistance, and the laboratory should be asked to test for it. It is possible to use only one drug within each drug class. If it is difficult finding five drugs to treat then the clinician can request that high-level INH-resistance be looked for. If the strain has only low-level INH-resistance (resistance at 0.2 mg/l INH, but sensitive at 1.0 mg/l INH), then high dose INH can be used as part of the regimen. When counting drugs, PZA and interferon count as zero; that is to say, when adding PZA to a four-drug regimen, another drug must be chosen to make five. It is not possible to use more than one injectable (STM, capreomycin or amikacin), because the toxic effect of these drugs is additive: If possible, the aminoglycoside should be given daily for a minimum of three months (and perhaps thrice weekly thereafter). Ciprofloxacin should not be used in the treatment of tuberculosis if other fluoroquinolones are available.
There is no intermittent regimen validated for use in MDR-TB, but clinical experience is that giving injectable drugs for five days a week (because there is no-one available to give the drug at weekends) does not seem to result in inferior results. Directly observed therapy helps to improve outcomes in MDR-TB and should be considered an integral part of the treatment of MDR-TB.
Response to treatment must be obtained by repeated sputum cultures (monthly if possible). Treatment for MDR-TB must be given for a minimum of 18 months and cannot be stopped until the patient has been culture-negative for a minimum of nine months. It is not unusual for patients with MDR-TB to be on treatment for two years or more.
Patients with MDR-TB should be isolated in negative-pressure rooms, if possible. Patients with MDR-TB should not be accommodated on the same ward as immunosuppressed patients (HIV-infected patients, or patients on immunosuppressive drugs). Careful monitoring of compliance with treatment is crucial to the management of MDR-TB (and some physicians insist on hospitalisation if only for this reason). Some physicians will insist that these patients remain isolated until their sputum is smear-negative, or even culture-negative (which may take many months, or even years). Keeping these patients in hospital for weeks (or months) on end may be a practical or physical impossibility, and the final decision depends on the clinical judgement of the physician treating that patient. The attending physician should make full use of therapeutic drug monitoring (in particular, of the aminoglycosides) both to monitor compliance and to avoid toxic effects.
Some supplements may be useful as adjuncts in the treatment of tuberculosis, but, for the purposes of counting drugs for MDR-TB, they count as zero (if four drugs are already in the regimen, it may be beneficial to add arginine or vitamin D or both, but another drug will be needed to make five).
- arginine (peanuts are a good source)
- vitamin D
- Dzherelo
- V5 Immunitor
The drugs listed below have been used in desperation, and it is uncertain as to whether they are effective at all. They are used when it is not possible to find five drugs from the list above.
- imipenem
- co-amoxiclav
- clofazimine
- prochlorperazine
- metronidazole
On December 28, 2012 the U.S. Food and Drug Administration (FDA) approved bedaquiline (marketed as Sirturo by Johnson & Johnson) to treat multi-drug resistant tuberculosis, the first new treatment in 40 years. Sirturo is to be used in a combination therapy for patients who have failed standard treatment and have no other options. Sirturo is an adenosine triphosphate synthase (ATP synthase) inhibitor.
The following drugs are experimental compounds that are not commercially available, but may be obtained from the manufacturer as part of a clinical trial or on a compassionate basis. Their efficacy and safety are unknown:
- pretomanid (manufactured by Novartis, developed in partnership with TB Alliance)
- delamanid
In cases of extremely resistant disease, surgery to remove infection portions of the lung is, in general, the final option. The center with the largest experience in this is the National Jewish Medical and Research Center in Denver, Colorado. In 17 years of experience, they have performed 180 operations; of these, 98 were lobectomies and 82 were pneumonectomies. There is a 3.3% operative mortality, with an additional 6.8% dying following the operation; 12% experienced significant morbidity (in particular, extreme breathlessness). Of 91 patients who were culture-positive before surgery, only 4 were culture-positive after surgery.
The resurgence of tuberculosis in the United States, the advent of HIV-related tuberculosis, and the development of strains of TB resistant to the first-line therapies developed in recent decades—serve to reinforce the thesis that Mycobacterium tuberculosis, the causative organism, makes its own preferential option for the poor. The simple truth is that almost all tuberculosis deaths result from a lack of access to existing effective therapy.
The latex particle agglutination test (LAT) is a more sensitive method to detect "H. influenzae" than is culture. Because the method relies on antigen rather than viable bacteria, the results are not disrupted by prior antibiotic use. It also has the added benefit of being much quicker than culture methods. However, antibiotic sensitivity testing is not possible with LAT alone, so a parallel culture is necessary.
Polymerase chain reaction (PCR) assays have been proven to be more sensitive than either LAT or culture tests, and highly specific. However, PCR assays have not yet become routine in clinical settings. Countercurrent immunoelectrophoresis has been shown to be an effective research diagnostic method, but has been largely supplanted by PCR.
The important factors for successful prevention of GBS-EOD using IAP and the universal screening approach are:
- Reach most pregnant women for antenatal screens
- Proper sample collection
- Using an appropriate procedure for detecting GBS
- Administering a correct IAP to GBS carriers
Most cases of GBS-EOD occur in term infants born to mothers who screened negative for GBS colonization and in preterm infants born to mothers who were not screened, though some false-negative results observed in the GBS screening tests can be due to the test limitations and to the acquisition of GBS between the time of screening and delivery. These data show that improvements in specimen collection and processing methods for detecting GBS are still necessary in some settings. False-negative screening test, along with failure to receive IAP in women delivering preterm with unknown GBS colonization status, and the administration of inappropriate IAP agents to penicillin-allergic women account for most missed opportunities for prevention of cases of GBS-EOD.
GBS-EOD infections presented in infants whose mothers had been screened as GBS culture-negative are particularly worrying, and may be caused by incorrect sample collection, delay in processing the samples, incorrect laboratory techniques, recent antibiotic use, or GBS colonization after the screening was carried out.