Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
Blood testing for the mother is called an Indirect Coombs Test (ICT) or an Indirect Agglutination Test (IAT). This test tells whether there are antibodies in the maternal plasma. If positive, the antibody is identified and given a titer. Critical titers are associated with significant risk of fetal anemia and hydrops. Titers of 1:8 or higher is considered critical for Kell. Titers of 1:16 or higher are considered critical for all other antibodies. After critical titer is reached, care is based on MCA scans. If antibodies are low and have a sudden jump later in pregnancy, an MCA scan is warranted. If the titer undergoes a 4 fold increase, it should be considered significant regardless of if the critical value has been reached. It should be noted that maternal titers are not useful in predicting fetal anemia after the first affected gestation and should not be used for the basis of care. Titers are tested monthly until 24 weeks, after which they are done every 2 weeks.
"In only 2 situations are patients not monitored identically to patients who are Rh sensitized. The first is that of alloimmunization to the c, E, or, C antigens. Some concern exists that hemolysis may occur in these patients with a lower than 1:16 titer. Thus, if the initial titer is 1:4 and stable but increases at 26 weeks' gestation to 1:8, assessment with MCA Doppler velocity at that point is reasonable. However, if the patient presents in the first trimester with a 1:8 titer that remains stable at 1:8 throughout the second trimester, continued serial antibody titers are appropriate.
The second situation in which patients should not be treated identically to patients who are Rh D sensitized is that of Kell isoimmunization because several cases of severe fetal hemolysis with anti-Kell antibodies have occurred in the setting of low titers."
In the case of a positive ICT, the woman must carry a medical alert card or bracelet for life because of the risk of a transfusion reaction.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
There are 3 possible ways to test the fetal antigen status. Free Cell DNA, Amniocentesis, and Chorionic Villus Sampling. Of the three, CVS is no longer used due to risk of worsening the maternal antibody response. Once antigen status has been determined, assessment may be done with MCA scans.
- Free Cell DNA can be run on certain antigens. Blood is taken from the mother, and using PCR, can detect the K, C, c, D, and E alleles of fetal DNA. This blood test is non-invasive to the fetus and is an easy way of checking antigen status and risk of HDN. Testing has proven very accurate and is routinely done in the UK at the International Blood Group Reference Laboratory in Bristol. Sanequin laboratory in Amsterdam, Netherlands also performs this test. For US patients, blood may be sent to either of the labs. In the US, Sensigene is done by Sequenome to determine fetal D status. Sequenome does not accept insurance in the US, but US and Canadian patients have had insurance cover the testing done overseas.
- Amniocentesis is another recommended method for testing antigen status and risk for HDN. Fetal antigen status can be tested as early as 15 weeks by PCR of fetal cells.
- CVS is possible as well to test fetal antigen status but is not recommended. CVS carries a higher risk of fetal maternal hemorrhage and can raise antibody titers, potentially worsening the antibody effect.
MCA scans Middle cerebral artery - peak systolic velocity is changing the way sensitized pregnancies are managed. This test is done noninvasively with ultrasound. By measuring the peak velocity of blood flow in the middle cerebral artery, a MoM (multiple of the median) score can be calculated. MoM of 1.5 or greater indicates severe anemia and should be treated with IUT.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
In some cases, the direct coombs will be negative but severe, even fatal HDN can occur. An indirect coombs needs to be run in cases of anti-C, anti-c, and anti-M. Anti-M also recommends antigen testing to rule out the presence of HDN.
- Hgb - the infant’s hemoglobin should be tested from cord blood.
- Reticulocyte count - Reticulocytes are elevated when the infant is producing more blood to combat anemia. A rise in the retic count can mean that an infant may not need additional transfusions. Low retic is observed in infants treated with IUT and in those with HDN from anti-Kell
- Neutrophils - as Neutropenia is one of the complications of HDN, the neutrophil count should be checked.
- Thrombocytes - as thrombocytopenia is one of the complications of HDN, the thrombocyte count should be checked.
- Bilirubin should be tested from cord blood.
- Ferritin - because most infants affected by HDN have iron overload, a ferritin must be run before giving the infant any additional iron.
- Newborn Screening Tests - Transfusion with donor blood during pregnancy or shortly after birth can affect the results of the Newborn Screening Tests. It is recommended to wait and retest 10–12 months after last transfusion. In some cases, DNA testing from saliva can be used to rule out certain conditions.
Most Rh disease can be prevented by treating the mother during pregnancy or promptly (within 72 hours) after childbirth. The mother has an intramuscular injection of anti-Rh antibodies (Rho(D) immune globulin). This is done so that the fetal rhesus D positive erythrocytes are destroyed before the immune system of the mother can discover them and become sensitized. This is passive immunity and the effect of the immunity will wear off after about 4 to 6 weeks (or longer depending on injected dose) as the anti-Rh antibodies gradually decline to zero in the maternal blood.
It is part of modern antenatal care to give all rhesus D negative pregnant women an anti-RhD IgG immunoglobulin injection at about 28 weeks gestation (with or without a booster at 34 weeks gestation). This reduces the effect of the vast majority of sensitizing events which mostly occur after 28 weeks gestation. Giving Anti-D to all Rhesus negative pregnant women can mean giving it to mothers who do not need it (because her baby is Rhesus negative or their blood did not mix). Many countries routinely give Anti-D to Rhesus D negative women in pregnancy. In other countries, stocks of Anti-D can run short or even run out. Before Anti-D is made routine in these countries, stocks should be readily available so that it is available for women who need Anti-D in an emergency situation.
A recent review found research into giving Anti-D to all Rhesus D negative pregnant women is of low quality. However the research did suggest that the risk of the mother producing antibodies to attack Rhesus D positive fetal cells was lower in mothers who had the Anti-D in pregnancy. There were also fewer mothers with a positive kleihauer test (which shows if the mother’s and unborn baby’s blood has mixed).
Anti-RhD immunoglobulin is also given to non-sensitized rhesus negative women immediately (within 72 hours—the sooner the better) after potentially sensitizing events that occur earlier in pregnancy.
The discovery of cell-free DNA in the maternal plasma has allowed for the non-invasive determination of the fetal RHD genotype. In May 2017, the Society for Obstetrics and Gynecology of Canada is now recommending that the optimal management of the D-negative pregnant woman is based on the prediction of the fetal D-blood group by cell-free DNA in maternal plasma with targeted antenatal anti-D prophylaxis. This provides the optimal care for D-negative pregnant women and has been adopted as the standard approach in a growing number of countries around the world. It is no longer considered appropriate to treat all D-negative pregnant women with human plasma derivatives when there are no benefits to her or to the fetus in a substantial percentage of cases.
Routine antenatal antibody screening blood tests (indirect Coombs test) do not screen for ABO HDN. If IgG anti-A or IgG anti-B antibodies are found in the pregnant woman's blood, they are not reported with the test results, because they do not correlate well with ABO HDN. Diagnosis is usually made by investigation of a newborn baby who has developed jaundice during the first week of life.
Testing
- Coombs - after birth baby will have a direct coombs test run to confirm antibodies attached to the infant’s red blood cells. This test is run from cord blood. In some cases, the direct coombs will be negative but severe, even fatal HDN can occur. An indirect coombs needs to be run in cases of anti-C, anti-c, and anti-M. Anti-M also recommends antigen testing to rule out the presence of HDN.
- Hgb - the infant’s hemoglobin should be tested from cord blood.
- Reticulocyte count - Reticulocytes are elevated when the infant is producing more blood to combat anemia. A rise in the retic count can mean that an infant may not need additional transfusions. Low retic is observed in infants treated with IUT and in those with HDN from anti-Kell
- Neutrophils - as Neutropenia is one of the complications of HDN, the neutrophil count should be checked.
- Thrombocytes - as thrombocytopenia is one of the complications of HDN, the thrombocyte count should be checked.
- Bilirubin should be tested from cord blood.
- Ferritin - because most infants affected by HDN have iron overload, a ferritin must be run before giving the infant any additional iron.
- Newborn Screening Tests - Transfusion with donor blood during pregnancy or shortly after birth can affect the results of the Newborn Screening Tests. It is recommended to wait and retest 10–12 months after last transfusion. In some cases, DNA testing from saliva can be used to rule out certain conditions.
Types of HDN are classified by the type of antigens involved. The main types are ABO HDN, Rhesus HDN, Kell HDN, and other antibodies. ABO hemolytic disease of the newborn can range from mild to severe, but generally it is a mild disease. It can be caused by anti-A and anti-B antibodies. Rhesus D hemolytic disease of the newborn (often called Rh disease) is the most common form of severe HDN. Rhesus c hemolytic disease of the newborn can range from a mild to severe disease - is the third most common form of severe HDN. Rhesus e and rhesus C hemolytic disease of the newborn are rare. Combinations of antibodies, for example, anti-Rhc and anti-RhE occurring together can be especially severe.
Anti-Kell hemolytic disease of the newborn is most commonly caused by anti-K antibodies, the second most common form of severe HDN. Over half of the cases of anti-K related HDN are caused by multiple blood transfusions. Antibodies to the other Kell antigens are rare.
In some cases, the direct coombs will be negative but severe, even fatal HDN can occur. An indirect coombs needs to be run in cases of anti-C, anti-c, and anti-M. Anti-M also recommends antigen testing to rule out the presence of HDN.
The antibodies in ABO HDN cause anemia due to destruction of fetal red blood cells and jaundice due to the rise in blood levels of bilirubin a by-product of hemoglobin break down. If the anemia is severe, it can be treated with a blood transfusion, however this is rarely needed. On the other hand, neonates have underdeveloped livers that are unable to process large amounts of bilirubin and a poorly developed blood-brain barrier that is unable to block bilirubin from entering the brain.This can result in kernicterus if left unchecked. If the bilirubin level is sufficiently high as to cause worry, it can be lowered via phototherapy in the first instance or an exchange transfusion if severely elevated.
- Phototherapy - Phototherapy is used for cord bilirubin of 3 or higher. Some doctors use it at lower levels while awaiting lab results.
- IVIG - IVIG has been used to successfully treat many cases of HDN. It has been used not only on anti-D, but on anti-E as well. IVIG can be used to reduce the need for exchange transfusion and to shorten the length of phototherapy. The AAP recommends "In isoimmune hemolytic disease, administration of intravenousγ-globulin (0.5-1 g/kg over 2 hours) is recommended if the TSB is rising despite intensive phototherapy or the TSB level is within 2 to 3 mg/dL (34-51 μmol/L) of the exchange level . If necessary, this dose can be repeated in 12 hours (evidence quality B: benefits exceed harms). Intravenous γ-globulin has been shown to reduce the need for exchange transfusions in Rh and ABO hemolytic disease."
- Exchange transfusion - Exchange transfusion is used when bilirubin reaches either the high or medium risk lines on the normogram provided by the American Academy of Pediatrics (Figure 4). Cord bilirubin >4 is also indicative of the need for exchange transfusion.
Classification with APS requires evidence of both one or more specific, documented clinical events (either a vascular thrombosis and/or adverse obstetric event) and the confirmed presence of a repeated aPL. The Sapporo APS classification criteria (1998, published in 1999) were replaced by the Sydney criteria in 2006. Based on the most recent criteria, classification with APS requires one clinical and one laboratory manifestation:
- Clinical:
- A documented episode of arterial, venous, or small vessel thrombosis — other than superficial venous thrombosis — in any tissue or organ by objective validated criteria with no significant evidence of inflammation in the vessel wall, and/or
- 1 or more unexplained deaths of a morphologically normal fetus (documented by ultrasound or direct examination of the fetus) at or beyond the 10th week of gestation and/or 3 or more unexplained consecutive spontaneous abortions before the 10th week of gestation, with maternal anatomic or hormonal abnormalities and paternal and maternal chromosomal causes excluded or at least 1 premature birth of a morphologically normal neonate before the 34th week of gestation due to eclampsia or severe pre-eclampsia according to standard definitions, or recognized features of placental insufficiency "plus"
- Laboratory:
- Anti-cardiolipin IgG and/or IgM measured by standardized, non-cofactor dependent ELISA on 2 or more occasions, not less than 12 weeks apart; medium or high titre (i.e., > 40 GPL or MPL, or > the 99th percentile) and/or
- Anti-β2 glycoprotein I IgG and/or IgM measured by standardized ELISA on 2 or more occasions, not less than 12 weeks apart; medium or high titre (> the 99th percentile) and/or
- Lupus anticoagulant detected on 2 occasions not less than 12 weeks apart according to the guidelines of the International Society of Thrombosis and Hemostasis.
There are 3 distinct APS disease entities: primary (the absence of any comorbidity), secondary (when there is a pre-existing autoimmune condition, most frequently systemic lupus erythematosus, SLE), and catastrophic (when there is simultaneous multi-organ failure with small vessel occlusion).
According to a 2006 consensus statement, it is advisable to classify APS into one of the following categories for research purposes:
- I: more than one laboratory criterion present in any combination;
- IIa: lupus anticoagulant present alone
- IIb: anti-cardiolipin IgG and/or IgM present alone in medium or high titers
- IIc: anti-β2 glycoprotein I IgG and/or IgM present alone in a titer greater than 99th percentile
The International Consensus Statement is commonly used for Catastrophic APS diagnosis. Based on this statement, Definite CAPS diagnosis requires:
- a) Vascular thrombosis in three or more organs or tissues and
- b) Development of manifestations simultaneously or in less than a week and
- c) Evidence of small vessel thrombosis in at least one organ or tissue and
- d) Laboratory confirmation of the presence of aPL.
VDRL, which detects antibodies against syphilis, may have a false positive result in aPL-positive patients (aPL bind to the lipids in the test and make it come out positive), although the more specific test for syphilis, FTA-Abs, that use recombinant antigens will not have a false-positive result.
Antiphospholipid syndrome is tested for in the laboratory using both liquid phase coagulation assays (lupus anticoagulant) and solid phase ELISA assays (anti-cardiolipin antibodies).
Genetic thrombophilia is part of the differential diagnosis of APS and can coexist in some APS patients. Presence of genetic thrombophilia may determine the need for anticoagulation therapy. Thus genetic thrombophilia screening can consist of:
- Further studies for factor V Leiden variant and the prothrombin G20210A mutation, factor VIII levels, MTHFR mutation.
- Levels of protein C, free and total protein S, factor VIII, antithrombin, plasminogen, tissue plasminogen activator (TPA) and plasminogen activator inhibitor-1 (PAI-1)
The testing of antibodies to the possible individual targets of aPL such as β glycoprotein 1 and antiphosphatidyl serine is currently under debate as testing for anticardiolipin appears to be currently sensitive and specific for diagnosis of APS even though cardiolipin is not considered an in vivo target for antiphospholipid antibodies.
Acquired hemolytic anemia can be divided into immune and non-immune mediated forms of hemolytic anemia.
Drug induced hemolysis has large clinical relevance. It occurs when drugs actively provoke red blood cell destruction. It can be divided in the following manner:
- Drug-induced autoimmune hemolytic anemia
- Drug-induced nonautoimmune hemolytic anemia
A total of four mechanisms are usually described, but there is some evidence that these mechanisms may overlap.
Four subtypes are recognised, but the clinical utility of distinguishing subtypes is limited.
1. positive ANA and SMA, elevated immunoglobulin G (classic form, responds well to low dose steroids);
2. positive LKM-1 (typically female children and teenagers; disease can be severe), LKM-2 or LKM-3;
3. positive antibodies against soluble liver antigen (this group behaves like group 1) (anti-SLA, anti-LP)
4. no autoantibodies detected (~20%) (of debatable validity/importance)
The diagnosis of autoimmune hepatitis is best achieved with a combination of clinical, laboratory, and histological findings after excluding other etiological factors (e.g. viral, hereditary, metabolic, cholestatic, and drug-induced diseases).
A number of specific antibodies found in the blood (antinuclear antibody (ANA), anti-smooth muscle antibody (SMA), anti-liver kidney microsomal antibodies (LKM-1, LKM-2, LKM-3), anti soluble liver antigen (SLA), liver–pancreas antigen (LP), and anti-mitochondrial antibody (AMA)) are of use, as is finding an increased Immunoglobulin G level. However, the diagnosis of autoimmune hepatitis always requires a liver biopsy.
Expert opinion has been summarized by the International Autoimmune Hepatitis Group, which has published criteria which utilize clinical and laboratory data that can be used to help determine if a patient has autoimmune hepatitis.
A calculator based on those criteria is available online.
Overlapping presentation with primary biliary cirrhosis and primary sclerosing cholangitis has been observed.
Diagnosis of AIR can be difficult due to the overlap of symptoms with other disorders. Examination of the fundus (inner surface of eye) can show no results or it can show narrowing of the blood vessels, abnormal colouration of the optic disc, and retinal atrophy. Fundus examination results are not indicative of autoimmune retinopathy but they are used to initiate the diagnostic process. An electroretinogram (eye test used to see abnormalities in the retina) is used to detect AIR. An abnormal electroretinogram (ERG) with respect to light and dark adaptations indicates AIR. The ERG also allows differentiation between cancer-associated retinopathy and melanoma-associated retinopathy. If the ERG shows cone responses, CAR can be prematurely diagnosed. If the ERG shows a significant decrease in b-wave amplitude, MAR can be prematurely diagnosed. To confirm, analysis for anti-retinal antibodies through Western blotting of serum collected from the patient is done.
Antinuclear antibody (ANA) testing and anti-extractable nuclear antigen (anti-ENA) form the mainstay of serologic testing for SLE. Several techniques are used to detect ANAs. Clinically the most widely used method is indirect immunofluorescence (IF). The pattern of fluorescence suggests the type of antibody present in the people's serum. Direct immunofluorescence can detect deposits of immunoglobulins and complement proteins in the people's skin. When skin not exposed to the sun is tested, a positive direct IF (the so-called lupus band test) is an evidence of systemic lupus erythematosus.
ANA screening yields positive results in many connective tissue disorders and other autoimmune diseases, and may occur in normal individuals. Subtypes of antinuclear antibodies include anti-Smith and anti-double stranded DNA (dsDNA) antibodies (which are linked to SLE) and anti-histone antibodies (which are linked to drug-induced lupus). Anti-dsDNA antibodies are highly specific for SLE; they are present in 70% of cases, whereas they appear in only 0.5% of people without SLE. The anti-dsDNA antibody titers also tend to reflect disease activity, although not in all cases. Other ANA that may occur in people with SLE are anti-U1 RNP (which also appears in systemic sclerosis and mixed connective tissue disease), SS-A (or anti-Ro) and SS-B (or anti-La; both of which are more common in Sjögren's syndrome). SS-A and SS-B confer a specific risk for heart conduction block in neonatal lupus.
Other tests routinely performed in suspected SLE are complement system levels (low levels suggest consumption by the immune system), electrolytes and kidney function (disturbed if the kidney is involved), liver enzymes, and complete blood count.
The lupus erythematosus (LE) cell test was commonly used for diagnosis, but it is no longer used because the LE cells are only found in 50–75% of SLE cases, and they are also found in some people with rheumatoid arthritis, scleroderma, and drug sensitivities. Because of this, the LE cell test is now performed only rarely and is mostly of historical significance.
Some physicians make a diagnosis on the basis of the American College of Rheumatology (ACR) classification criteria. The criteria, however, were established mainly for use in scientific research including use in randomized controlled trials which require higher confidence levels, so many people with SLE may not pass the full criteria.
Immunoglobulin samples are obtained from a large pool of healthy, matched donors (10000 - 20000). The immunoglobulin mixture is then administered through IV at a rate of 0.4g/kg/day for 5 days. Antibodies in the IVIG mixture interact with binding sites of the disease-associated antibodies (such as anti-recoverin antibodies). This prevents binding to proteins targeted as antigenic and reduces disease activity. Responses to this treatment can vary and are impacted if the patient is diagnosed with any type of cancer. Patients who respond positively show improvement in the clarity of their vision and their visual field.
In the presence of suspicious symptoms a number of test are helpful in the diagnosis:
- Muscle enzymes are often elevated, i.e. creatine kinase
- Anti-Jo-1 antibody testing
- Electromyography
- Muscle biopsy
- Pulmonary function testing
- Lung biopsy
In certain situations, testing of other antibodies, specific imaging (MRI, thoracic high resolution computed tomography), and swallowing evaluation may be needed.
The diagnosis of GPS is often difficult, as numerous other diseases can cause the various manifestations of the condition and the condition itself is rare. The most accurate means of achieving the diagnosis is testing the affected tissues by means of a biopsy, especially the kidney, as it is the best-studied organ for obtaining a sample for the presence of anti-GBM antibodies. On top of the anti-GBM antibodies implicated in the disease, about one in three of those affected also has cytoplasmic antineutrophilic antibodies in their bloodstream, which often predates the anti-GBM antibodies by about a few months or even years. The later the disease is diagnosed, the worse the outcome is for the affected person.
Antinuclear antibodies are usually positive in drug induced Lupus. Anti-Neutrophil Cytoplasmic antibodies (ANCA) can also be positive in association with certain drugs. Furthermore, Anti-Histone antibodies can also be positive in drug induced lupus.
Anti-Histone antibodies are positive in up to 95% of patients with drug induced lupus. DIThe most common medications associated with drug induced lupus are hydralazine, procainamide, isoniazid, methyldopa, chlorpromazine, quinidine, and minocycline.