Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Symptoms-based methods of fertility awareness may be used to detect ovulation or to determine that cycles are anovulatory. Charting of the menstrual cycle may be done by hand, or with the aid of various fertility monitors. Records of one of the primary fertility awareness signs—basal body temperature—can detect ovulation by identifying the shift in temperature which takes place after ovulation. It is said to be the most reliable way of confirming whether ovulation has occurred.
Women may also use ovulation predictor kits (OPKs) which detect the increase in luteinizing hormone (LH) levels that usually indicates imminent ovulation. For some women, these devices do not detect the LH surge, or high levels of LH are a poor predictor of ovulation; this is particularly common in women with PCOS. In such cases, OPKs and those fertility monitors which are based on LH may show false results, with an increased number of false positives or false negatives. Dr Freundl from the University of Heidelberg suggests that tests which use LH as a reference often lack sensitivity and specificity.
The European Society of Human Reproduction and Embryology (ESHRE) notes that the aim of ovulation induction should be mono-ovulation and not over-stimulation of the ovaries . The risks associated with multiple pregnancy are much higher than singleton pregnancy; incidences of perinatal death are seven times higher in triplet births and five times higher in twin births than the risks associated with a singleton pregnancy. It is therefore important to adapt the treatment to each individual patient.
Women with polycystic ovary syndrome may be particularly at risk. Multiple pregnancy occurs in approximately 15-20% of cases following cycles induced with gonadotrophins such as hMG and FSH induced ovulations.
During ovulation induction, it is recommended to start at a low dose and monitor the ovarian response with vaginal ultrasound, including discernment of the number of developing follicles. A cycle with supernumerary follicles is usually defined as one where there are more than two follicles >16 mm in diameter. It is generally recommended to have such cycles cancelled because of the risk of multiple pregnancy. In cancelled cycles, the woman or couple should be warned of the risks in case of supernumerary follicles, and should avoid sexual intercourse or use contraception until the next menstruation. Induction of final maturation (such as done with hCG) may need to be withheld because of increased risk of ovarian hyperstimulation syndrome(OHSS). The starting dose of the inducing drug should be reduced in the next cycle.
Alternatives to cancelling a cycle are mainly:
- Aspiration of supernumerary follicles until one or two remain.
- Converting the protocol to IVF treatment with embryo transfer of up to two embryos only.
- Selective fetal reduction. This alternative confers a high risk of complications.
- Proceeding with any multiple pregnancy without fetal reduction, with the ensuing risk of complications. This alternative is not recommended.
If both partners are young and healthy and have been trying to conceive for one year without success, a visit to a physician or women's health nurse practitioner (WHNP) could help to highlight potential medical problems earlier rather than later. The doctor or WHNP may also be able to suggest lifestyle changes to increase the chances of conceiving.
Women over the age of 35 should see their physician or WHNP after six months as fertility tests can take some time to complete, and age may affect the treatment options that are open in that case.
A doctor or WHNP takes a medical history and gives a physical examination. They can also carry out some basic tests on both partners to see if there is an identifiable reason for not having achieved a pregnancy. If necessary, they refer patients to a fertility clinic or local hospital for more specialized tests. The results of these tests help determine the best fertility treatment.
Some other blood tests are suggestive but not diagnostic. The ratio of LH (Luteinizing hormone) to FSH (Follicle-stimulating hormone), when measured in international units, is elevated in women with PCOS. Common cut-offs to designate abnormally high LH/FSH ratios are 2:1 or 3:1 as tested on Day 3 of the menstrual cycle. The pattern is not very sensitive; a ratio of 2:1 or higher was present in less than 50% of women with PCOS in one study. There are often low levels of sex hormone-binding globulin, in particular among obese or overweight women.
Anti-Müllerian hormone (AMH) is increased in PCOS, and may become part of its diagnostic criteria.
Other causes of irregular or absent menstruation and hirsutism, such as hypothyroidism, congenital adrenal hyperplasia (21-hydroxylase deficiency), Cushing's syndrome, hyperprolactinemia, androgen secreting neoplasms, and other pituitary or adrenal disorders, should be investigated.
Diagnosis is largely achieved by obtaining a complete medical history followed by physical exam and ultrasound. If need be, laboratory tests or hysteroscopy may be used. The following are a list of diagnostic procedures that medical professionals may use to identify the cause of the abnormal uterine bleeding.
- Pelvic and rectal examination to ensure that bleeding is not from lower reproductive tract (i.e. vagina, cervix) or rectum
- Pap smear to rule out cervical neoplasia
- Pelvic ultrasound scan is the first line diagnostic tool for identifying structural abnormalities.
- Endometrial biopsy to exclude endometrial cancer or atypical hyperplasia
- Hysteroscopy
- TSH and T4 dosage to rule out hypothyroidism
"Fertility tourism" is the practice of traveling to another country for fertility treatments. It may be regarded as a form of medical tourism. The main reasons for fertility tourism are legal regulation of the sought procedure in the home country, or lower price. In-vitro fertilization and donor insemination are major procedures involved.
Female patients may show symptoms of hyperandrogenism in their early life, but physicians become more concerned when the patient is in her late teens or older.
Hyperandrogenism is most often diagnosed by checking for signs of hirsutism according to a standardized method that scores the range of excess hair growth.
Checking medical history and a physical examination of symptoms are used for an initial diagnosis. Patient history assessed includes age at thelarche, adrenarche, and menarche; patterns of menstruation; obesity; reproductive history; and the start and advancement of hyperandrogenism symptoms. Patterns of menstruation are examined since irregular patterns may appear with hirsutism. Family history is also assessed for occurrences of hyperandrogenism symptoms or obesity in other family members.
A laboratory test can also be done on the patient to evaluate levels of FSH, LH, DHEAS, prolactin, 17OHP, and total and free testosterone in the patient's blood. Abnormally high levels of any of these hormones help in diagnosing hyperandrogenism.
Since risk factors are not known and vary among individuals with hyperandrogegism, there is no sure method to prevent this medical condition. Therefore, more longterm studies are needed first to find a cause for the condition before being able to find a sufficient method of prevention.
However, there are a few things that can help avoid long-term medical issues related to hyperandrogenism like PCOS. Getting checked by a medical professional for hyperandrogenism; especially if one has a family history of the condition, irregular periods, or diabetes; can be beneficial. Watching your weight and diet is also important in decreasing your chances, especially in obese females, since continued exercise and maintaining a healthy diet leads to an improved menstrual cycle as well as to decreased insulin levels and androgen concentrations.
Where an underlying cause can be identified, treatment may be directed at this. Clearly heavy periods at menarche and menopause may settle spontaneously (the menarche being the start and menopause being the cessation of periods).
If the degree of bleeding is mild, all that may be sought by the woman is the reassurance that there is no sinister underlying cause. If anemia occurs due to bleeding then iron tablets may be used to help restore normal hemoglobin levels.
The condition is often treated with hormones, particularly as abnormal uterine bleeding commonly occurs in the early and late menstrual years when contraception is also sought. Usually, oral combined contraceptive or progesterone only pills may be taken for a few months, but for longer-term treatment the alternatives of injected Depo Provera or the more recent progesterone releasing IntraUterine System (IUS) may be used. Fibroids may respond to hormonal treatment, and if they do not, then surgical removal may be required.
Tranexamic acid tablets that may also reduce loss by up to 50%. This may be combined with hormonal medication previously mentioned.
Anti-inflammatory medication like NSAIDs may also be used. NSAIDs are the first-line medications in ovulatory menorrhagia, resulting in an average reduction of 20-46% in menstrual blood flow. For this purpose, NSAIDs are ingested for only 5 days of the menstrual cycle, limiting their most common adverse effect of dyspepsia.
A definitive treatment for menorrhagia is to perform hysterectomy (removal of the uterus). The risks of the procedure have been reduced with measures to reduce the risk of deep vein thrombosis after surgery, and the switch from the front abdominal to vaginal approach greatly minimizing the discomfort and recuperation time for the patient; however extensive fibroids may make the womb too large for removal by the vaginal approach. Small fibroids may be dealt with by local removal (myomectomy). A further surgical technique is endometrial ablation (destruction) by the use of applied heat (thermoablation).
In the UK the use of hysterectomy for menorrhagia has been almost halved between 1989 and 2003. This has a number of causes: better medical management, endometrial ablation and particularly the introduction of IUS which may be inserted in the community and avoid the need for specialist referral; in one study up to 64% of women cancelled surgery.
Disorders of ovulation include oligoovulation and anovulation:
- Oligoovulation is infrequent or irregular ovulation (usually defined as cycles of ≥36 days or <8 cycles a year)
- Anovulation is absence of ovulation when it would be normally expected (in a post-menarchal, premenopausal woman). Anovulation usually manifests itself as irregularity of menstrual periods, that is, unpredictable variability of intervals, duration, or bleeding. Anovulation can also cause cessation of periods (secondary amenorrhea) or excessive bleeding (dysfunctional uterine bleeding).
A menstrual disorder is an abnormal condition in a woman's menstrual cycle.
Conditions justifying newborn screening for any disorder include (1) a simple test with an acceptable sensitivity and specificity, (2) a dire consequence if not diagnosed early, (3) an effective treatment if diagnosed, and (4) a frequency in the population high enough to justify the expense. In the last decade more states and countries are adopting newborn screening for salt-wasting CAH due to 21-hydroxylase deficiency, which leads to death in the first month of life if not recognized.
The salt-wasting form of CAH has an incidence of 1 in 15,000 births and is potentially fatal within a month if untreated. Steroid replacement is a simple, effective treatment. However, the screening test itself is less than perfect. While the 17α-hydroxyprogesterone level is easy to measure and sensitive (rarely missing real cases), the test has a poorer specificity. Screening programs in the United States have reported that 99% of positive screens turn out to be false positives upon investigation of the infant. This is a higher rate of false positives than the screening tests for many other congenital metabolic diseases.
When a positive result is detected, the infant must be referred to a pediatric endocrinologist to confirm or disprove the diagnosis. Since most infants with salt-wasting CAH become critically ill by 2 weeks of age, the evaluation must be done rapidly despite the high false positive rate.
Levels of 17α-hydroxyprogesterone, androstenedione, and cortisol may play a role in screening.
Since CAH is an autosomal recessive disease, most children with CAH are born to parents unaware of the risk and with no family history. Each child will have a 25% chance of being born with the disease. Families typically wish to minimize the degree of virilization of a girl. There is no known prenatal harm to a male fetus from CAH, so treatment can begin at birth.
Adrenal glands of female fetuses with CAH begin producing excess testosterone by the 9th week of gestation. The most important aspects of virilization (urogenital closure and phallic urethra) occur between 8 and 12 weeks. Theoretically, if enough glucocorticoid could be supplied to the fetus to reduce adrenal testosterone production by the 9th week, virilization could be prevented and the difficult decision about timing of surgery avoided.
The challenge of preventing severe virilization of girls is twofold: detection of CAH at the beginning of the pregnancy, and delivery of an effective amount of glucocorticoid to the fetus without causing harm to the mother.
The first problem has not yet been entirely solved, but it has been shown that if dexamethasone is taken by a pregnant woman, enough can cross the placenta to suppress fetal adrenal function.
At present no program screens for risk in families who have not yet had a child with CAH. For families desiring to avoid virilization of a second child, the current strategy is to start dexamethasone as soon as a pregnancy has been confirmed even though at that point the chance that the pregnancy is a girl with CAH is only 12.5%. Dexamethasone is taken by the mother each day until it can be safely determined whether she is carrying an affected girl.
Whether the fetus is an affected girl can be determined by chorionic villus sampling at 9–11 weeks of gestation, or by amniocentesis at 15–18 weeks gestation. In each case the fetal sex can be determined quickly, and if the fetus is a male the dexamethasone can be discontinued. If female, fetal DNA is analyzed to see if she carries one of the known abnormal alleles of the "CYP21" gene. If so, dexamethasone is continued for the remainder of the pregnancy at a dose of about 1 mg daily.
Most mothers who have followed this treatment plan have experienced at least mild cushingoid effects from the glucocorticoid but have borne daughters whose genitalia are much less virilized.
Generally gynecologic hemorrhage does not arise out of nowhere. Regular gynecologic examinations, cancer screening, and contraceptive measures go a long way in preventing and forestalling unsuspected acute bleeding events.
Since the Sertoli cells are not affected by Leydig cell hypoplasia, anti-Müllerian hormone is secreted normally and so there are no Müllerian structures. Wolffian structures, such as the prostate, vasa deferentia, and epidydimides are present. In type I, abdominal testes are revealed on ultrasound; in type II testes may be descended or undescended.
People with Leydig cell hypoplasia type I display no response to the hCG stimulation test; there is no increase in serum levels of testosterone and dihydrotestosterone. Leydig cell hypoplasia type II can display either a pronounced rise of testosterone levels or no rise.
In any case, the diagnosis is confirmed on biopsy of the testes, revealing either absent or hypoplastic Leydig cells. The inside of the testis will be grayish and mucous, displaying arrested spermatogenesis and the presence of Sertoli cells. The diagnosis can also be confirmed by looking for mutations in the gene for the LH receptor.
A diagnosis of Leydig cell hypoplasia is usually made in the neonatal period, following the discovery of ambiguous genitalia, or at puberty, when secondary sex characteristics fail to develop. Puberty is the most common time for Leydig cell hypoplasia to be diagnosed.
A history will establish if the condition is acute or chronic, and if external circumstances are involved. A gynecologic examination is usually complemented by a gynecologic ultrasonography. A blood count determines the degree of anemia and may point out bleeding problems. The pregnancy test is important, particularly as bleeding in early pregnancy presents as gynecological hemorrhage and ectopic pregnancy can be fatal.
Diagnosis is broadly classified into supportive and definitive investigations:
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
Currently, in the United States and over 40 other countries, every child born is screened for 21-hydroxylaase CAH at birth. This test will detect elevated levels of 17-hydroxy-progesterone (17-OHP). Detecting high levels of 17-OHP enables early detection of CAH. Newborns detected early enough can be placed on medication and live a relatively normal life.
The screening process, however, is characterized by a high false positive rate. In one study, CAH screening had the lowest positive predictive value (111 true-positive cases among 20,647 abnormal screening results in a 2-year period, or 0.53%, compared with 6.36% for biotinidase deficiency, 1.84% for congenital hypo-thyroidism, 0.56% for classic galactosemia, and 2.9% for phenylketonuria). According to this estimate, 200 unaffected newborns required clinical and laboratory follow-up for every true case of CAH.
Genetic analysis can be helpful to confirm a diagnosis of CAH but it is not necessary if classic clinical and laboratory findings are present.
In classic 21-hydroxylase deficiency, laboratory studies will show:
Classic 21-hydroxylase deficiency typically causes 17α-hydroxyprogesterone blood levels >242 nmol/L. (For comparison, a full-term infant at three days of age should have <3 nmol/L. Many neonatal screening programs have specific reference ranges by weight and gestational age because high levels may be seen in premature infants without CAH.) Salt-wasting patients tend to have higher 17α-hydroxyprogesterone levels than non-salt-wasting patients. In mild cases, 17α-hydroxyprogesterone may not be elevated in a particular random blood sample, but it will rise during a corticotropin stimulation test.
Management of salt-wasting crises and mineralocorticoid treatment are as for other forms of salt-wasting congenital adrenal hyperplasias: saline and fludrocortisone.
Glucocorticoids can be provided at minimal replacement doses because there is no need for suppression of excessive adrenal androgens or mineralocorticoids. As with other forms of adrenal insufficiency, extra glucocorticoid is needed for stress coverage.
XX females with lipoid CAH may need estrogen replacement at or after puberty. Active intervention has been used to preserve the possibility of fertility and conception in lipoid CAH females. In a case report in 2009, a woman with late onset lipoid CAH due to StAR deficiency underwent hormone replacement therapy in combination with an assisted fertility technique, intracytoplasmic sperm injection. This led to ovulation and with implantation of the in vitro fertilized egg, a successful birth.
Presence of an ovarian tumour plus hormonal disturbances suggests a Leydig cell tumour, granulosa cell tumour or thecoma. However, hormonal disturbances, in Leydig tumours, is present in only 2/3 of cases. Testicular Leydig cell tumours can be detected sonographically, ultrasound examinations may be ordered in the event of a palpable scrotal lump, however incidental identification of these lesions is also possible.
A conclusive diagnosis is made via histology, as part of a pathology report made during or after surgery. Reinke crystals are classically found in these tumours and help confirm the diagnosis, although they are seen in less than half of all Leydig cell tumours. See also Sex cord-stromal tumour. Immunohistochemical markers of Leydig cell tumours include inhibin-alpha, calretinin, and melan-A.
The usual chemotherapy regimen has limited efficacy in tumours of this type, although Imatinib has shown some promise. There is no current role for radiotherapy.
The usual treatment is surgery. The surgery for females usually is a fertility-sparing unilateral salpingo-oophorectomy. For malignant tumours, the surgery may be radical and usually is followed by adjuvant chemotherapy, sometimes by radiation therapy. In all cases, initial treatment is followed by surveillance. Because in many cases Leydig cell tumour does not produce elevated tumour markers, the focus of surveillance is on repeated physical examination and imaging.
In males, a radical inguinal orchiectomy is typically performed. However, testes-sparing surgery can be used to maintain fertility in children and young adults. This approach involves an inguinal or scrotal incision and ultrasound guidance if the tumour is non-palpable. This can be done because the tumour is typically unifocal, not associated with precancerous lesions, and is unlikely to recur.
The prognosis is generally good as the tumour tends to grow slowly and usually is benign: 10% are malignant. For malignant tumours with undifferentiated histology, prognosis is poor.