Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Amblyopia is diagnosed by identifying low visual acuity in one or both eyes, out of proportion to the structural abnormality of the eye and excluding other visual disorders as causes for the lowered visual acuity. It can be defined as an interocular difference of two lines or more in acuity (e.g. on Snellen chart) when the eye optics is maximally corrected. In young children, visual acuity is difficult to measure and can be estimated by observing the reactions of the patient reacts when one eye is covered, including observing the patient's ability to follow objects with one eye.
Stereotests like the Lang stereotest are not reliable exclusion tests for amblyopia. A person who passes the Lang stereotest test is unlikely to have strabismic amblyopia, but could nonetheless have refractive or deprivational amblyopia. It has been suggested that binocular retinal birefringence scanning may be able to identify, already in very young children, amblyopia that is associated with strabismus, microstrabismus, or reduced fixation accuracy. Diagnosis and treatment of amblyopia as early as possible is necessary to keep the vision loss to a minimum.
Screening for amblyopia is recommended in all people between three and five years of age.
Homonymous hemianopsia secondary to posterior cerebral artery occlusion – may result in syndromes of memory impairment, opposite visual field loss (homonymous hemianopsia), and sometimes hemisensory deficits.
The PCA supplies the occipital lobe and the medial portion of the temporal lobe.
Infarction of occipital cortex typically causes macular sparing hemianopias due to dual blood supply.
Occlusion of the calcarine artery that results in infarction of the superior part of the occipital lobe causes a lower peripheral visual field defect.
Posterior cerebral artery penetrating branch occlusion may result in infarction of the posterior capsule, causing hemisensory loss, and (if low enough) a transient hemianopia may also occur.
Prisms or "field expanders" that bend light have been prescribed for decades in patients with hemianopsia. Higher power Fresnel ("stick-on") prisms are commonly employed because they are thin and light weight, and can be cut and placed in different positions on a spectacle lens.
Peripheral prism spectacles expand the visual field of patients with hemifield visual defects and have the potential to improve visual function and mobility. Prism spectacles incorporate higher power prisms, with variable shapes and designs. The Gottlieb button prism, and the Peli superior and inferior horizontal bands are some proprietary examples of prism glasses. These high power prisms "create" artificial peripheral vision into the non-blind field for obstacle avoidance and motion detection.
Binasal hemianopsia (or binasal hemianopia) is the medical description of a type of partial blindness where vision is missing in the inner half of both the right and left visual field. It is associated with certain lesions of the eye and of the central nervous system, such as congenital hydrocephalus.
An anopsia or anopia is a defect in the visual field. If the defect is only partial, then the portion of the field with the defect can be used to isolate the underlying cause.
Types of partial anopsia:
- Hemianopsia
- Homonymous hemianopsia
- Heteronymous hemianopsia
- Binasal hemianopsia
- Bitemporal hemianopsia
- Superior hemianopia
- Inferior hemianopia
- Quadrantanopia
The term "anopsia" comes from the Ancient Greek ἀν- ("an-"), "un-" and ὄψις ("opsis") "sight".
Hemianopsia, or hemianopia, is a decreased vision or blindness (anopsia) in half the visual field, usually on one side of the vertical midline. The most common causes of this damage are stroke, brain tumor, and trauma.
This article deals only with permanent hemianopsia, and not with transitory or temporary hemianopsia, as identified by William Wollaston PRS in 1824. Temporary hemianopsia can occur in the aura phase of migraine.
Between 2 and 5% of the population in western countries have amblyopia. In the U.K., 90% of visual health appointments in the child are concerning amblyopia.
Depending on the chosen criterion for diagnosis, between 1 and 4% of the children have amblyopia.
In binasal hemianopsia, vision is missing in the inner (nasal or medial) half of both the right and left visual fields. Information from the nasal visual field falls on the temporal (lateral) retina. Those lateral retinal nerve fibers do not cross in the optic chiasm. Calcification of the internal carotid arteries can impinge the uncrossed, lateral retinal fibers leading to loss of vision in the nasal field.
Note: Clinical testing of visual fields (by confrontation) can produce a false positive result (particularly in inferior nasal quadrants).
Bitemporal hemianopsia, also known as bitemporal heteronymous hemianopsia or bitemporal hemianopia, is the medical description of a type of partial blindness where vision is missing in the outer half of both the right and left visual field. It is usually associated with lesions of the optic chiasm, the area where the optic nerves from the right and left eyes cross near the pituitary gland.
When the pathology involves both eyes, it is either homonymous or Heteronymous.
In bitemporal hemianopsia vision is missing in the outer (temporal or lateral) half of both the right and left visual fields. Information from the temporal visual field falls on the nasal (medial) retina. The nasal retina is responsible for carrying the information along the optic nerve, and crosses to the other side at the optic chiasm. When there is compression at optic chiasm the visual impulse from both nasal retina are affected, leading to inability to view the temporal, or peripheral, vision. This phenomenon is known as bitemporal hemianopsia. Knowing the neurocircuitry of visual signal flow through the optic tract is very important in understanding bitemporal hemianopsia.
Bitemporal hemianopsia most commonly occurs as a result of tumors located at the mid-optic chiasm. Since the adjacent structure is the pituitary gland, some common tumors causing compression are pituitary adenomas and craniopharyngiomas. Also another relatively common neoplastic cause is meningiomas. A cause of vascular origin is an aneurysm of the anterior communicating artery which arise superior to the chiasm, enlarge, and compress it from above.