Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
DISH is diagnosed by findings on x-ray studies. Radiographs of the spine will show abnormal bone formation (ossification) along the anterior spinal ligament. The disc spaces, facet and sacroiliac joints remain unaffected. Diagnosis requires confluent ossification of at least four contiguous vertebral bodies. Classically, advanced disease may have "melted candle wax" appearance along the spine on radiographic studies. In some cases, DISH may be manifested as ossification of enthesis in other parts of the skeleton.
The calcification and ossification is most common on the right side of the spine. In people with dextrocardia and situs inversus this calcification occurs on the left side, which confirms the role of the descending thoracic aorta in preventing the physical manifestations of DISH on one side of the spine.
Myeolography, including post-myelographic CT is likely the most effective imaging study an accurate diagnosis.
Surgical management options include extensive cervical laminectomy with or without an additional posterior arthrodesis, anterior decompression and arthrodesis, and posterior cervical laminoplasty. Treatment decisions can be made based on a grading systems devised by Hirabayashi et al., supplemented by the Nurick myelopathy classification system.
Osteomyelitis (bone infection), which is much more common than infantile cortical hyperostosis, must be excluded, since it requires urgent treatment. Other diagnoses that can mimic this disorder and need to be excluded include physical trauma, child abuse, Vitamin A excess, hyperphosphatemia, prostaglandin E1 and E2 administration, scurvy, infections (including syphilis), Ewing sarcoma, and metastatic neuroblastoma.
Most infants with infantile cortical hyperostosis are diagnosed by physical examination. X-rays can confirm the presence of bone changes and soft tissue swelling. Biopsy of the affected areas can confirm the presence of typical histopathological changes. No specific blood tests exist, but tests such as erythrocyte sedimentation rate (ESR) and alkaline phosphatase levels are often elevated. A complete blood count may show anemia (low red blood cell count) and leukocytosis (high white blood cell count). Other tests may be done to help exclude other diagnoses. Ultrasound imaging can help diagnose prenatal cases.
Manipulative physiotherapy, therapeutic exercises and chiropractic manipulative therapy shows beneficial results for decreasing pain and increasing spinal range of motion. As areas of the spine and tendons can become inflamed NSAIDs such as ibuprofen and Naproxen can be helpful in both relieving pain and inflammation associated with DISH. It is hoped that by minimizing inflammation in these areas, further calcification of tendons and ligaments of the spine leading to bony outgrowths (enthesophytes) will be prevented, although causative factors are still unknown.
Chondrocalcinosis can be visualized on projectional radiography, CT scan, MRI, US, and nuclear medicine. CT scans and MRIs show calcific masses (usually within the ligamentum flavum or joint capsule), however radiography is more successful. At ultrasound, chondrocalcinosis may be depicted as echogenic foci with no acoustic shadow within the hyaline cartilage. As with most conditions, chondrocalcinosis can present with similarity to other diseases such as ankylosing spondylitis and gout.
In 1984, a joint effort led to the definition of specific classification criteria for ankylosing spondylitis, called the “Modified New York Criteria”. One of the central New York criteria was the existence of radiographically visible changes in the sacroiliac joints and/or spine, which have formed due to bone fusion, erosion and/or formation caused by the disease. Even though these criteria helped to improve uniformly define ankylosing spondylitis, such radiologic changes often only manifested several years after the first disease symptoms appeared. In order to be able to study also patients with early and less typical forms, new criteria were needed that could identify the disease already at an early stage. In 2009 the Modified New York criteria were extended by a broad set of new classification criteria that aimed to classify patients based on the presence of typical spondyloarthritis disease features. These included inflammatory back pain, family history for axial spondyloarthritis, response to treatment with nonsteroidal anti-inflammatory drugs (NSAIDs), past history of or current inflammation in the joints (arthritis), tendon-bone attachment of the heel (enthesitis), or eyes (uveitis), bowel (inflammatory bowel disease), skin (psoriasis) or signs of elevated inflammation (C-reactive protein and erythrocyte sedimentation rate. Important parts of the ASAS axSpA criteria is the biomarker HLA-B27 and magnetic resonance imaging (MRI). The criteria can only be applied in people that have chronic back pain (at least 3 months duration) started before the age of 45 years and only in those patients that already have a diagnosis of axial SpA. Since the disease ankylosing spondylitis was still defined by the Modified New York criteria of 1984, there was the need to find a new disease term that would also include the less severe forms or early onset of ankylosing spondylitis. This expression was found in the umbrella term axial spondyloarthritis. The 2009 classification criteria are called the ASAS (Assessment of SpondyloArthritis international Society) axial spondayloarthritis criteria.
There is no specific test for this condition. Diagnosis is based on signs and symptoms, and exclusion of other conditions.
Two elements are considered: radiology and joint fluid analysis.
Radiology has a large role to play in finding chondrocalcinosis, with radiographs, CT scans, MRIs, US, and nuclear medicine all having a part. CT scans and MRIs show calcific masses (usually within the ligamentum flavum or joint capsule), however radiography is more successful. At ultrasound, chondrocalcinosis may be depicted as echogenic foci with no acoustic shadow within the hyaline cartilage. As with most conditions, CPPD can present with similarity to other diseases such as ankylosing spondylitis and gout.
Arthrocentesis, or removing synovial fluid from the affected joint, is performed to test the synovial fluid for the calcium pyrophosphate crystals that are present in CPPD. When stained with H&E stain, calcium pyrophosphate crystals appears deeply blue ("basophilic"). However, CPP crystals are much better known for their rhomboid shape and weak positive birefringence on polarized light microscopy, and this method remains the most reliable method of identifying the crystals under the microscope. However, even this method suffers from poor sensitivity, specificity, and inter-operator agreement.
These two modalities currently define CPPD disease but lack diagnostic accuracy, and are potentially epiphenomenological.
Sacroiliitis can be somewhat difficult to diagnose because the symptoms it manifests can also be caused by other, more common, conditions. If a physician suspects sacroiliitis, they will typically begin their diagnosis by performing a physical exam. Since the condition is axial, they can often pinpoint the affected joint by putting pressure on different places within the legs, hips, spine and buttocks. They may also ask a patient to perform some stretches that will put gentle stress on the sacroiliac joints.
X-rays, MRIs and other medical imaging tests can be used to show signs of inflammation and damage within the SI joints. Typically, a spine specialist will order a medical imaging test if they suspect ankylosing spondylitis or another form of arthritis to be the primary cause of inflammation and pain.
Normally, asymptomatic cases are not treated. Non-steroidal anti inflammatory drugs and surgery are two typical options for the rest.
In order to qualify a patient's condition as BSS, the bending angle must be greater than 45 degrees. While the presence of the condition is very easy to note, the cause of the condition is much more difficult to discern. Conditions not considered to be BSS include vertebral fractures, previously existing conditions, and ankylosing spondylitis. Lower-back CT scans and MRIs can typically be used to visualize the cause of the disease. Further identification of the cause can be done by histochemical or cellular analysis of muscle biopsy.
Camptocormia is becoming progressively found in patients with Parkinson's disease.
The diagnosis of Parkinson's-associated camptocormia includes the use of imaging of the brain and the spinal cord, along with electromyography or muscle biopsies.
Muscle biopsies are also a useful tool to diagnose camptocormia. Muscle biopsies found to have variable muscle fiber sizes and even endomysial fibrosis may be markers of bent spine syndrome. In addition, disorganized internal architecture and little necrosis or regeneration is a marker of camptocormia.
Patients with camptocormia present with reduced strength and stooped posture when standing due to weakened paraspinous muscles (muscles parallel to the spine). Clinically, limb muscles show fatigue with repetitive movements. Paraspinous muscles undergo fat infiltration. Electromyography may be used as well in diagnosis. On average, the paraspinous muscles of affected individuals were found to be 75% myopathic, while limb muscles were 50% percent myopathic. Creatine kinase activity levels in skeletal muscle are a diagnostic indicator that can be identifiable through blood tests.
Axial spondyloarthritis can be divided into two classes:
1. Non-radiographic axial spondyloarthritis (nr-axSpA): This term encompasses both, the early disease stage of ankylosing spondylitis, in which no radiographic changes are visible yet, as well as less severe forms of ankylosing spondylitis.
2. Radiographic axial spondyloarthritis:Synonym for ankylosing spondylitis. This class is termed radiographic axial spondyloarthritis due to the unambiguous diagnosis through radiographic changes in the sacroiliac joints and/or spine.
Treatment of sacroiliitis can vary depending on the severity of the condition and the amount of pain the patient is currently experiencing. However, it typically falls into one of two categories non-surgical and surgical:
The U.S. Preventive Services Task Force (USPSTF) recommend that all women 65 years of age or older be screened by bone densitometry. Additionally they recommend screening women with increased risk factors that puts them at risk equivalent to a 65‑year‑old. There is insufficient evidence to make recommendations about the intervals for repeated screening and the appropriate age to stop screening. In men the harm versus benefit of screening for osteoporosis is unknown. Prescrire states that the need to test for osteoporosis in those who have not had a previous bone fracture is unclear. The International Society for Clinical Densitometry, however, suggest BMD testing for men 70 or older, or those who are indicated for risk equal to that of a 70‑year‑old. A number of tools exist to help determine who is reasonable to test.
The only effective line of treatment for malignant infantile osteopetrosis is hematopoietic stem cell transplantation. It has been shown to provide long-term disease-free periods for a significant percentage of those treated; can impact both hematologic and skeletal abnormalities; and has been used successfully to reverse the associated skeletal abnormalities.
Radiographs of at least one case with malignant infantile osteopetrosis have demonstrated bone remodeling and recanalization of medullar canals following hematopoietic stem cell transplantation. This favorable radiographic response could be expected within one year following the procedure - nevertheless, primary graft failure can prove fatal.
The bone edema in arthitis mutilans can be treated with TNF inhibitors in the short term: a 2007 study found that the bone edema associated with psoriatic arthritis (of which arthitis mutilans is a subtype) responded to TNF inhibitors with "dramatic" improvement, but the study was not determinative of whether TNF inhibitors would prevent new bone formation, bone fusion, or osteolysis (bone resorption).
Variations of the HLA-B gene increase the risk of developing ankylosing spondylitis, although it is not a diagnostic test. Those with the HLA-B27 variant are at a higher risk than the general population of developing the disorder. HLA-B27, demonstrated in a blood test, can occasionally help with diagnosis, but in itself is not diagnostic of AS in a person with back pain. Over 90% of people that have been diagnosed with AS are HLA-B27 positive, although this ratio varies from population to population (about 50% of African Americans with AS possess HLA-B27 in contrast to the figure of 80% among those with AS who are of Mediterranean descent).
The Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), developed in Bath (UK), is an index designed to detect the inflammatory burden of active disease. The BASDAI can help to establish a diagnosis of AS in the presence of other factors such as HLA-B27 positivity, persistent buttock pain which resolves with exercise, and X-ray or MRI-evident involvement of the sacroiliac joints. It can be easily calculated and accurately assesses the need for additional therapy; a person with AS with a score of four out of a possible 10 points while on adequate NSAID therapy is usually considered a good candidate for biologic therapy.
The Bath Ankylosing Spondylitis Functional Index (BASFI) is a functional index which can accurately assess functional impairment due to the disease, as well as improvements following therapy. The BASFI is not usually used as a diagnostic tool, but rather as a tool to establish a current baseline and subsequent response to therapy.
Although a 2011 research article stated that disagreements between hand surgeons and rheumatologists remain regarding the indications, timing and effectiveness of rheumatoid hand surgery, arthritis mutilans may be successfully treated by iliac-bone graft and arthrodesis of the interphalangeal joints and the metacarpophalangeal joint in each finger.
Once established, periods of remissions and relapse can persist indefinitely.
While IH may remit spontaneously for most people the condition is long-lasting. Treatments as described above can be effective in reducing the frequency and degree of effusions. Deformative changes to joints are not a common feature of this mostly non-inflammatory condition.
A common cause of chondrocalcinosis is calcium pyrophosphate dihydrate crystal deposition disease (CPPD).
Excessive calcium (due to hypomagnesemia) has a potential relationship with chondrocalcinosis, and magnesium supplementation may reduce or alleviate symptoms. In some cases, arthritis from injury can cause chondrocalcinosis.
Other causes of chondrocalcinosis include:
- Hypercalcaemia, especially when caused by hyperparathyroidism
- Arthritis
- Gout
- Wilson disease
- Hemochromatosis
- Ochronosis
- Hypothyroidism
- Hyperoxalemia
- Acromegaly
- osteoarthritis
Craniometaphyseal dysplasia is diagnosed based on clinical and radiographic findings that include hyperostosis. Some things such as cranial base sclerosis and nasal sinuses obstruction can be seen during the beginning of the child's life. In radiographic findings the most common thing that will be found is the narrowing of foramen magnum and the widening of long bones. Once spotted treatment is soon suggested to prevent further compression of the foramen magnum and disabling conditions.
The differential diagnosis of malignant infantile osteopetrosis includes other genetic skeletal dysplasias that cause osteosclerosis. They are collectively known as osteosclerosing dysplasias. The differential diagnosis of genetic osteosclerosing dysplasias including infantile osteopetrosis has been tabulated and illustrated in literature citations.
- Neuropathic infantile osteopetrosis
- Infantile osteopetrosis with renal tubular acidosis
- Infantile osteopetrosis with immunodeficiency
- IO with leukocyte adhesion deficiency syndrome (LAD-III)
- Intermediate osteopetrosis
- Autosomal dominant osteopetrosis (Albers-Schonberg)
- Pyknodysostosis (osteopetrosis acro-osteolytica)
- Osteopoikilosis (Buschke–Ollendorff syndrome)
- Osteopathia striata with cranial sclerosis
- Mixed sclerosing bone dysplasia
- Progressive diaphyseal dysplasia (Camurati–Engelmann disease)
- SOST-related sclerosing bone dysplasias