Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The gold standard for diagnosis is identification of trypanosomes in a patient sample by microscopic examination. Patient samples that can be used for diagnosis include chancre fluid, lymph node aspirates, blood, bone marrow, and, during the neurological stage, cerebrospinal fluid. Detection of trypanosome-specific antibodies can be used for diagnosis, but the sensitivity and specificity of these methods are too variable to be used alone for clinical diagnosis. Further, seroconversion occurs after the onset of clinical symptoms during a "T. b. rhodesiense" infection, so is of limited diagnostic use.
Trypanosomes can be detected from patient samples using two different preparations. A wet preparation can be used to look for the motile trypanosomes. Alternatively, a fixed (dried) smear can be stained using Giemsa's or Field's technique and examined under a microscope. Often, the parasite is in relatively low abundance in the sample, so techniques to concentrate the parasites can be used prior to microscopic examination. For blood samples, these include centrifugation followed by examination of the buffy coat; mini anion-exchange/centrifugation; and the quantitative buffy coat (QBC) technique. For other samples, such as spinal fluid, concentration techniques include centrifugation followed by examination of the sediment.
Three serological tests are also available for detection of the parasite: the micro-CATT, wb-CATT, and wb-LATEX. The first uses dried blood, while the other two use whole blood samples. A 2002 study found the wb-CATT to be the most efficient for diagnosis, while the wb-LATEX is a better exam for situations where greater sensitivity is required.
The use of trypanotolerant breeds for livestock farming should be considered if the disease is widespread.
Fly control is another option but is difficult to implement.
The main approaches to controlling African trypanosomiasis are to reduce the reservoirs of infection and the presence of the tsetse fly. Screening of people at risk helps identify patients at an early stage. Diagnosis should be made as early as possible and before the advanced stage to avoid complicated, difficult and risky treatment procedures.
The presence of "T. cruzi" is diagnostic of Chagas disease. It can be detected by microscopic examination of fresh anticoagulated blood, or its buffy coat, for motile parasites; or by preparation of thin and thick blood smears stained with Giemsa, for direct visualization of parasites. Microscopically, "T. cruzi" can be confused with "Trypanosoma rangeli", which is not known to be pathogenic in humans. Isolation of "T. cruzi" can occur by inoculation into mice, by culture in specialized media (for example, NNN, LIT); and by xenodiagnosis, where uninfected Reduviidae bugs are fed on the patient's blood, and their gut contents examined for parasites.
Various immunoassays for "T. cruzi" are available and can be used to distinguish among strains (zymodemes of "T.cruzi" with divergent pathogenicities). These tests include: detecting complement fixation, indirect hemagglutination, indirect fluorescence assays, radioimmunoassays, and ELISA. Alternatively, diagnosis and strain identification can be made using polymerase chain reaction (PCR).
There is currently no vaccine against Chagas disease. Prevention is generally focused on decreasing the numbers of the insect that spreads it ("Triatoma") and decreasing their contact with humans. This is done by using sprays and paints containing insecticides (synthetic pyrethroids), and improving housing and sanitary conditions in rural areas. For urban dwellers, spending vacations and camping out in the wilderness or sleeping at hostels or mud houses in endemic areas can be dangerous; a mosquito net is recommended. Some measures of vector control include:
- A yeast trap can be used for monitoring infestations of certain species of triatomine bugs ("Triatoma sordida", "Triatoma brasiliensis", "Triatoma pseudomaculata", and "Panstrongylus megistus").
- Promising results were gained with the treatment of vector habitats with the fungus "Beauveria bassiana".
- Targeting the symbionts of Triatominae through paratransgenesis can be done.
A number of potential vaccines are currently being tested. Vaccination with "Trypanosoma rangeli" has produced positive results in animal models. More recently, the potential of DNA vaccines for immunotherapy of acute and chronic Chagas disease is being tested by several research groups.
Blood transfusion was formerly the second-most common mode of transmission for Chagas disease, but the development and implementation of blood bank screening tests has dramatically reduced this risk in the 21st century. Blood donations in all endemic Latin American countries undergo Chagas screening, and testing is expanding in countries, such as France, Spain and the United States, that have significant or growing populations of immigrants from endemic areas. In Spain, donors are evaluated with a questionnaire to identify individuals at risk of Chagas exposure for screening tests.
The US FDA has approved two Chagas tests, including one approved in April 2010, and has published guidelines that recommend testing of all donated blood and tissue products. While these tests are not required in US, an estimated 75–90% of the blood supply is currently tested for Chagas, including all units collected by the American Red Cross, which accounts for 40% of the U.S. blood supply. The Chagas Biovigilance Network reports current incidents of Chagas-positive blood products in the United States, as reported by labs using the screening test approved by the FDA in 2007.
Currently there are few medically related prevention options for African Trypanosomiasis (i.e. no vaccine exists for immunity). Although the risk of infection from a tsetse fly bite is minor (estimated at less than 0.1%), the use of insect repellants, wearing long-sleeved clothing, avoiding tsetse-dense areas, implementing bush clearance methods and wild game culling are the best options to avoid infection available for local residents of affected areas.
At the 25th ISCTRC (International Scientific Council for Trypanosomiasis Research and Control) in Mombasa, Kenya, in October 1999, the idea of an African-wide initiative to control tsetse and trypanosomiasis populations was discussed. During the 36th summit of the Organization for African Unity in Lome, Togo, in July 2000, a resolution was passed to form the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). The campaign works to eradicate the tsetse vector population levels and subsequently the protozoan disease, by use of insecticide-impregnated targets, fly traps, insecticide-treated cattle, ultra-low dose aerial/ground spraying (SAT) of tsetse resting sites and the sterile insect technique (SIT). The use of SIT in Zanzibar proved effective in eliminating the entire population of tsetse flies but was expensive and is relatively impractical to use in many of the endemic countries afflicted with African trypanosomiasis.
Regular active surveillance, involving detection and prompt treatment of new infections, and tsetse fly control is the backbone of the strategy used to control sleeping sickness. Systematic screening of at-risk communities is the best approach, because case-by-case screening is not practical in endemic regions. Systematic screening may be in the form of mobile clinics or fixed screening centres where teams travel daily to areas of high infection rates. Such screening efforts are important because early symptoms are not evident or serious enough to warrant patients with gambiense disease to seek medical attention, particularly in very remote areas. Also, diagnosis of the disease is difficult and health workers may not associate such general symptoms with trypanosomiasis. Systematic screening allows early-stage disease to be detected and treated before the disease progresses, and removes the potential human reservoir. A single case of sexual transmission of West African sleeping sickness has been reported.
Trypanosomiasis could, in future be prevented by genetically altering the tsetse fly. As the tsetse fly is the main vector of transmission, making the fly immune to the disease by altering its genome could be the main component in an effort to eradicate the disease. New technologies such as CRISPR allowing cheaper and easier genetic engineering could allow for such measures.
If the outbreak is detected early, the organism can be destroyed by quarantines, movement controls, and maybe even put infected animals under euthanasia medication. Tsetse fly populations can be reduced or eliminated by traps, insecticides, and by treating infected animals with antiparasitic drugs. The Tse Tse habitat can be destroyed by alteration of vegetation so they can no longer live there.There are some drugs available that can prevent trypanosomiasis called prophylactic drugs.These drugs are very effective to protect animals during the times they are exposed to challenged diseases. Since they have been around for so long, some were not properly used which caused resistance to these drugs in some places.
The incubation period ranges from 4 days to approximately 8 weeks. The infection leads to significant weight loss and anaemia. Various symptoms are observed, including fever, oedema, adenitis, dermatitis and nervous disorders. The disease cannot be diagnosed with certainty except physically detecting parasites by blood microscopic examination or various serological reactions.
Biotechnology companies in the developing world have targeted neglected tropical diseases due to need to improve global health.
Mass drug administration is considered a possible method for eradication, especially for lymphatic filariasis, onchocerciasis, and trachoma, although drug resistance is a potential problem. According to Fenwick, Pfizer donated 70 million doses of drugs in 2011 to eliminate trachoma through the International Trachoma Initiative. Merck has helped The African Programme for the Control of Onchocerciasis (APOC) and Oncho Elimination Programme for the Americas to greatly diminished the effect of Onchocerciasis by donating ivermectin. Merck KGaA pledged to give 200 million tablets of praziquantel over 10 years, the only cure for schistosomiasis. GlaxoSmithKline has donated two billion tablets of medicine for lymphatic filariasis and pledged 400 million deworming tablets per year for five years in 2010. Johnson & Johnson has pledged 200 million deworming tablets per year. Novartis has pledged leprosy treatment, EISAI pledged two billion tablets to help treat lymphatic filariasis.
There are currently only two donor-funded non-governmental organizations that focus exclusively on NTDs: the Schistosomiasis Control Initiative and Deworm the World. Despite under-funding, many neglected diseases are cost-effective to treat and prevent. The cost of treating a child for infection of soil transmitted helminths and schistosomes (some of the main causes of neglected diseases), is less than US$0.50 per year, when administered as part of school-based mass deworming by Deworm the World. This programme is recommended by Giving What We Can and the Copenhagen Consensus Centre as one of the most efficient and cost-effective solutions. The efforts of Schistosomiasis Control Initiative to combat neglected diseases include the use of rapid-impact packages: supplying schools with packages including four or five drugs, and training teachers in how to administer them.
Some of the strategies for controlling tropical diseases include:
- Draining wetlands to reduce populations of insects and other vectors, or introducing natural predators of the vectors.
- The application of insecticides and/or insect repellents) to strategic surfaces such as clothing, skin, buildings, insect habitats, and bed nets.
- The use of a mosquito net over a bed (also known as a "bed net") to reduce nighttime transmission, since certain species of tropical mosquitoes feed mainly at night.
- Use of water wells, and/or water filtration, water filters, or water treatment with water tablets to produce drinking water free of parasites.
- Sanitation to prevent transmission through human waste.
- In situations where vectors (such as mosquitoes) have become more numerous as a result of human activity, a careful investigation can provide clues: for example, open dumps can contain stagnant water that encourage disease vectors to breed. Eliminating these dumps can address the problem. An education campaign can yield significant benefits at low cost.
- Development and use of vaccines to promote disease immunity.
- Pharmacologic pre-exposure prophylaxis (to prevent disease before exposure to the environment and/or vector).
- Pharmacologic post-exposure prophylaxis (to prevent disease after exposure to the environment and/or vector).
- Pharmacologic treatment (to treat disease after infection or infestation).
- Assisting with economic development in endemic regions. For example, by providing microloans to enable investments in more efficient and productive agriculture. This in turn can help subsistence farming to become more profitable, and these profits can be used by local populations for disease prevention and treatment, with the added benefit of reducing the poverty rate.
- Hospital for Tropical Diseases
- Tropical medicine
- Infectious disease
- Neglected diseases
- List of epidemics
- Waterborne diseases
- Globalization and disease
Additional neglected tropical diseases include:
Some tropical diseases are very rare, but may occur in sudden epidemics, such as the Ebola hemorrhagic fever, Lassa fever and the Marburg virus. There are hundreds of different tropical diseases which are less known or rarer, but that, nonetheless, have importance for public health.
A canine vector-borne disease (CVBD) is one of "a group of globally distributed and rapidly spreading illnesses that are caused by a range of pathogens transmitted by arthropods including ticks, fleas, mosquitoes and phlebotomine sandflies." CVBDs are important in the fields of veterinary medicine, animal welfare, and public health. Some CVBDs are of zoonotic concern.
Many CVBD infect humans as well as companion animals. Some CVBD are fatal; most can only be controlled, not cured. Therefore, infection should be avoided by preventing arthropod vectors from feeding on the blood of their preferred hosts. While it is well known that arthropods transmit bacteria and protozoa during blood feeds, viruses are also becoming recognized as another group of transmitted pathogens of both animals and humans.
Some "canine vector-borne pathogens of major zoonotic concern" are distributed worldwide, while others are localized by continent. Listed by vector, some such pathogens and their associated diseases are the following:
- Phlebotomine sandflies (Psychodidae): "Leishmania amazonensis", "L. colombiensis", and "L. infantum" cause visceral leishmaniasis (see also canine leishmaniasis). "L. braziliensis" causes mucocutaneous leishmaniasis. "L. tropica" causes cutaneous leishmaniasis. "L. peruviana" and "L. major" cause localized cutaneous leishmaniasis.
- Triatomine bugs (Reduviidae): "Trypanosoma cruzi" causes trypanosomiasis (Chagas disease).
- Ticks (Ixodidae): "Babesia canis" subspecies ("Babesia canis canis", "B. canis vogeli", "B. canis rossi", and "B. canis gibsoni" cause babesiosis. "Ehrlichia canis" and "E. chaffeensis" cause monocytic ehrlichiosis. "Anaplasma phagocytophilum" causes granulocytic anaplasmosis. "Borrelia burgdorferi" causes Lyme disease. "Rickettsia rickettsii" causes Rocky Mountain spotted fever. "Rickettsia conorii" causes Mediterranean spotted fever.
- Mosquitoes (Culicidae): "Dirofilaria immitis" and "D. repens" cause dirofilariasis.
The term Winterbottom's sign derives from descriptions of the posterior cervical lymphadenopathy associated with African trypanosomiasis made by a slave trader using the sign to weed out the ill.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Veterinarians usually attempt diagnosis with skin scrapings from multiple areas, which are then examined under a microscope for mites. "Sarcoptes" mites, because they may be present in relatively low numbers, and because they are often removed by dogs chewing at themselves, may be difficult to demonstrate. As a result, diagnosis in sarcoptic mange is often based on symptoms rather than actual confirmation of the presence of mites. A common and simple way of determining if a dog has mange is if it displays what is called a "pedal-pinna reflex", which is when the dog moves one of its hind legs in a scratching motion as the ear is being manipulated and scratched gently by the examiner; because the mites proliferate on the ear margins in nearly all cases at some point, this method works over 95% of the time. It is helpful in cases where all symptoms of mange are present but no mites are observed with a microscope. The test is also positive in animals with ear mites, an ear canal infection caused by a different but closely related mite (treatment is often the same). In some countries, an available serologic test may be useful in diagnosis.
Winterbottom's sign is seen in the early phase of African trypanosomiasis, a disease caused by the parasites "Trypanosoma brucei rhodesiense" and "Trypanosoma brucei gambiense" which is more commonly known as African sleeping sickness. Dr. Anthony Martinelli describes Winterbottom's sign as the swelling of lymph nodes (lymphadenopathy) along the back of the neck, in the posterior cervical chain of lymph nodes, as trypanosomes travel in the lymphatic fluid and cause inflammation.
It may be suggestive of cerebral infection.
Pets can transmit a number of diseases. Dogs and cats are routinely vaccinated against rabies. Pets can also transmit ringworm and "Giardia", which are endemic in both animal and human populations. Toxoplasmosis is a common infection of cats; in humans it is a mild disease although it can be dangerous to pregnant women. Dirofilariasis is caused by "Dirofilaria immitis" through mosquitoes infected by mammals like dogs and cats. Cat-scratch disease is caused by "Bartonella henselae" and "Bartonella quintana" from fleas which are endemic in cats. Toxocariasis is infection of humans of any of species of roundworm, including species specific to the dog ("Toxocara canis)" or the cat ("Toxocara cati"). Cryptosporidiosis can be spread to humans from pet lizards, such as the leopard gecko.
The differential diagnosis in a case of suspected human rabies may initially include any cause of encephalitis, in particular infection with viruses such as herpesviruses, enteroviruses, and arboviruses such as West Nile virus. The most important viruses to rule out are herpes simplex virus type one, varicella zoster virus, and (less commonly) enteroviruses, including coxsackieviruses, echoviruses, polioviruses, and human enteroviruses 68 to 71.
New causes of viral encephalitis are also possible, as was evidenced by the 1999 outbreak in Malaysia of 300 cases of encephalitis with a mortality rate of 40% caused by Nipah virus, a newly recognized paramyxovirus. Likewise, well-known viruses may be introduced into new locales, as is illustrated by the outbreak of encephalitis due to West Nile virus in the eastern United States. Epidemiologic factors, such as season, geographic location, and the patient's age, travel history, and possible exposure to bites, rodents, and ticks, may help direct the diagnosis.
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
Rabies can be difficult to diagnose, because, in the early stages, it is easily confused with other diseases or with aggressiveness. The reference method for diagnosing rabies is the fluorescent antibody test (FAT), an immunohistochemistry procedure, which is recommended by the World Health Organization (WHO). The FAT relies on the ability of a detector molecule (usually fluorescein isothiocyanate) coupled with a rabies-specific antibody, forming a conjugate, to bind to and allow the visualisation of rabies antigen using fluorescent microscopy techniques. Microscopic analysis of samples is the only direct method that allows for the identification of rabies virus-specific antigen in a short time and at a reduced cost, irrespective of geographical origin and status of the host. It has to be regarded as the first step in diagnostic procedures for all laboratories. Autolysed samples can, however, reduce the sensitivity and specificity of the FAT. The RT PCR assays proved to be a sensitive and specific tool for routine diagnostic purposes, particularly in decomposed samples or archival specimens. The diagnosis can be reliably made from brain samples taken after death. The diagnosis can also be made from saliva, urine, and cerebrospinal fluid samples, but this is not as sensitive and reliable as brain samples. Cerebral inclusion bodies called Negri bodies are 100% diagnostic for rabies infection but are found in only about 80% of cases. If possible, the animal from which the bite was received should also be examined for rabies.
Some light microscopy techniques may also be used to diagnose rabies at a tenth of the cost of traditional fluorescence microscopy techniques, allowing identification of the disease in less-developed countries.
Many human diseases can be transmitted to other primates, due to their extensive biological similarities. As a result, centers that hold, treat, or involve close proximity to primates and some other kinds of animals (for example zoos, researchers, and animal hospitals), often take steps to ensure animals are not exposed to human diseases they can catch. In some cases animals are routinely immunized with the same vaccines given to humans.
- Leishmaniasis - Both zoonotic and anthroponotic.
- Influenza, Measles, pneumonia and various other pathogens - Many primates.
- Tuberculosis - Both zoonotic and anthroponotic, with birds, cows, elephants, meerkats, mongooses, monkeys, and pigs known to have been affected.
More than 300 million people worldwide have asthma. The rate of asthma increases as countries become more urbanized and in many parts of the world those who develop asthma do not have access to medication and medical care. Within the United States, African Americans and Latinos are four times more likely to suffer from severe asthma than whites. The disease is closely tied to poverty and poor living conditions. Asthma is also prevalent in children in low income countries. Homes with roaches and mice, as well as mold and mildew put children at risk for developing asthma as well as exposure to cigarette smoke.
Unlike many other Western countries, the mortality rate for asthma has steadily risen in the United States over the last two decades. Mortality rates for African American children due to asthma are also far higher than that of other racial groups. For African Americans, the rate of visits to the emergency room is 330 percent higher than their white counterparts. The hospitalization rate is 220 percent higher and the death rate is 190 percent higher. Among Hispanics, Puerto Ricans are disporpotionatly affected by asthma with a disease rate that is 113 percent higher than non-Hispanic Whites and 50 percent higher than non-Hispanic Blacks. Studies have shown that asthma morbidity and mortality are concentrated in inner city neighborhoods characterized by poverty and large minority populations and this affects both genders at all ages. Asthma continues to have an adverse effects on the health of the poor and school attendance rates among poor children. 10.5 million days of school are missed each year due to asthma.
Affected dogs need to be isolated from other dogs and their bedding, and places they have occupied must be thoroughly cleaned. Other dogs in contact with a diagnosed case should be evaluated and treated. A number of parasitical treatments are useful in treating canine scabies. Sulfurated lime (a mixture of calcium polysulfides) rinses applied weekly or biweekly are effective (the concentrated form for use on plants as a fungicide must be diluted 1:16 or 1:32 for use on animal skin).
Selamectin is licensed for treatment in dogs by veterinary prescription in several countries; it is applied as a dose directly to the skin, once per month (the drug does not wash off). A related and older drug ivermectin is also effective and can be given by mouth for two to four weekly treatments or until two negative skin scrapings are achieved. Oral ivermectin is not safe to use on some collie-like herding dogs, however, due to possible homozygous MDR1 (P-glycoprotein) mutations that increase its toxicity by allowing it into the brain. Ivermectin injections are also effective and given in either weekly or every two weeks in one to four doses, although the same MDR1 dog restrictions apply.
Affected cats can be treated with fipronil and milbemycin oxime.
Topical 0.01% ivermectin in oil (Acarexx) has been reported to be effective in humans, and all mite infections in many types of animals (especially in ear mite infections where the animal cannot lick the treated area), and is so poorly absorbed that systemic toxicity is less likely in these sites. Nevertheless, topical ivermectin has not been well enough tested to be approved for this use in dogs, and is theoretically much more dangerous in zones where the animal can potentially lick the treated area. Selamectin applied to the skin (topically) has some of the same theoretical problems in collies and MDR1 dogs as ivermectin, but it has nevertheless been approved for use for all dogs provided that the animal can be observed for 8 hours after the first monthly treatment. Topical permethrin is also effective in both dogs and humans, but is toxic to cats.
Afoxolaner (oral treatment with a chewable tablet containing afoxolaner 2.27% w/w) has been shown to be efficient against both sarcoptic and demodectic mange in dogs.
Sarcoptic mange is transmissible to humans who come into prolonged contact with infested animals, and is distinguished from human scabies by its distribution on skin surfaces covered by clothing. For treatment of sarcoptic infection in humans, see scabies. For demodetic infection in humans, which is not as severe as it is in animals with thicker coats (such as dogs), see "Demodex folliculorum".