Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Nabers probe is used to check for furcation involvement clinically. Recently, cone beam computerised technology (CBCT) has also be used to detect furcation. Periapical and interproximal intraoral radiographs can help diagnosing and locating the furcation. The location and severity of furcation should be recorded in patient’s notes.
Only multirooted teeth have furcation. Therefore, upper first premolar, maxillary and mandibular molars may be involved.
Upper premolars have one buccal and one palatal root. Furcation involvement should be checked from the mesial and the distal aspects of the tooth.
Maxillary molars have three roots, a mesio-buccal root, disto-buccal root and a palatal root. Thus, check for furcation from buccal, mesio-palatal and disto-palatal aspects.
Mandibular molars have one mesial and one distal root, and so, check for involvement from buccal and lingual aspects.
The Kennedy classification quantifies partial edentulism. An outline is covered at the removable partial denture article.
Macroglossia is usually diagnosed clinically. Sleep endoscopy and imaging may be used for assessment of obstructive sleep apnea. The initial evaluation of all patients with macroglossia may involve abdominal ultrasound and molecular studies for Beckwith–Wiedemann syndrome.
A child with posterior crossbite should be treated immediately if the child shifts his mandible on closing which is often seen in a unilateral crossbite as mentioned above. The best age to treat a child with crossbite is in their mixed dentition when their palatal sutures have not fused to each other. Palatal expansion allows more space in an arch to relieve crowding and correct posterior crossbite. The correction can include any type of palatal expanders that will expand the palate which resolves the narrow constriction of the maxilla. There are several therapies that can be used to correct a posterior crossbite: braces, 'Z' spring or cantilever spring, quad helix, removable plates, clear aligner therapy, or a Delaire mask. The correct therapy should be decided by the orthodontist depending on the type and severity of the crossbite.
One of the keys in diagnosing the anterior crossbite due to skeletal vs dental causes is diagnosing a CR-CO shift in a patient. An adolescent presenting with anterior crossbite may be positioning their mandible forward into centric occlusion (CO) due to the dental interferences. Thus finding their occlusion in centric relation (CR) is key in diagnosis. For anterior crossbite, if their CO matches their CR then the patient truly has a skeletal component to their crossbite. If the CR shows a less severe class 3 malocclusion or teeth not in anterior crossbite, this may mean that their anterior crossbite results due to dental interferences.
Goal to treat unilateral crossbites should definitely include removal of occlusal interferences and elimination of the functional shift. Treating posterior crossbites early may help prevent the occurrence of Temporomandibular joint pathology.
Unilateral crossbites can also be diagnosed and treated properly by using a Deprogramming splint. This splint has flat occlusal surface which causes the muscles to deprogram themselves and establish new sensory engrams. When the splint is removed, a proper centric relation bite can be diagnosed from the bite.
Literature states that very few crossbites tend to self-correct which often justify the treatment approach of correcting these bites as early as possible. Only 0–9% of crossbites self-correct. Lindner et al. reported that in a 50% of crossbites were corrected in 76 four year old children.
The treatment aims are to eliminate the bacteria from the exposed surface of the root(s) and to establish the anatomy of the tooth, so that better plaque control can be achieved. Treatment plans for patients differ depending on the local and anatomical factors.
For Grade I furcation, scaling and polishing, root surface debridement or furcationplasty could be done if suitable.
For Grade II furcation, furcationplasty, open debridement, tunnel preparation, root resection, extraction, guided tissue regeneration (GTR) or enamel matrix derivative could be considered.
As for Grade III furcation, open debridement, tunnel preparation, root resection, GTR or tooth extraction could be performed if appropriate.
Tooth extraction is usually considered if there is extensive loss of attachment or if other treatments will not obtain good result (i.e. achieving a nice gingival contour to allow good plaque control).
In disease states, maxillary prognathism is associated with Cornelia de Lange syndrome; however, so-called false maxillary prognathism, or more accurately, retrognathism, where there is a lack of growth of the mandible, is by far a more common condition.
Prognathism, if not extremely severe, can be treated in growing patients with orthodontic functional or orthopaedic appliances. In adult patients this condition can be corrected by means of a combined surgical/orthodontic treatment, where most of the time a mandibular advancement is performed. The same can be said for mandibular prognathism.
Geoffrey Greenlee and others published a meta-analysis in 2011 which concluded that patients with orthognathic surgical correction of open bite had 82% stability in comparison to non-surgical correction of open bite which had 75% of stability after 1or more year of treatment. Both the groups started with 2-3mm of open bite initially.
Man-Suk Baek and others evaluated long-term stability of anterior open bite by intrusion of maxillary posterior teeth. Their results showed that the molars were intruded by 2.39mm during treatment and relapsed back by 0.45mm or 22.8%. The incisal overbite increased by 5.56mm during treatment and relapsed back by 1.20mm or 17%. They concluded that majority of the relapse occurred during first year of treatment.
Prosthetic replacement of missing teeth is possible using dental implant technology or dentures. This treatment can be successful in giving patients with anodontia a more aesthetically pleasing appearance. The use of an implant prosthesis in the lower jaw could be recommended for younger patients as it is shown to significantly improve the craniofacial growth, social development and self-image. The study associated with this evidence worked with individuals who had ectodermal dysplasia of varying age groups of up to 11, 11 to 18 and more than 18 years. It was noted that the risk of implant failure was significantly higher in patients younger than 18 years, but there is significant reason to use this methodology of treatment in those older. Overall the use of an implant-prosthesis has a considerable functional, aesthetic and psychological advantage when compared to a conventional denture, in the patients.
Treatment and prognosis of macroglossia depends upon its cause, and also upon the severity of the enlargement and symptoms it is causing. No treatment may be required for mild cases or cases with minimal symptoms. Speech therapy may be beneficial, or surgery to reduce the size of the tongue (reduction glossectomy). Treatment may also involve correction of orthodontic abnormalities that may have been caused by the enlarged tongue. Treatment of any underlying systemic disease may be required, e.g. radiotherapy.
The most common treatment for mandibular prognathism is a combination of orthodontics and orthognathic surgery. The orthodontics can involve braces, removal of teeth, or a mouthguard.
The surgery required has led, in some cases, to identity crises in patients, whereby the new facial structure has a negative impact mentally on how the patients perceive themselves.
Overbite medically refers to the extent of vertical (superior-inferior) overlap of the maxillary central incisors over the mandibular central incisors, measured relative to the incisal ridges.
The term overbite does not refer to a specific condition, nor is it a form of malocclusion. Rather an absent or excess overbite would be a malocclusion. Normal overbite is not measured in exact terms, but as a proportion (approximately 30–50% of the height of the mandibular incisors) and is commonly expressed as a percentage.
Several different types of magnetic resonance imaging (MRI) may be employed in diagnosis: MRI without contrast, Gd contrast enhanced T1-weighted MRI (GdT1W) or T2-weighted enhanced MRI (T2W or T2*W). Non-contrast enhanced MRI is considerably less expensive than any of the contrast enhanced MRI scans. The gold standard in diagnosis is GdT1W MRI.
The reliability of non-contrast enhanced MRI is highly dependent on the sequence of scans, and the experience of the operator.
Crowding of the teeth is treated with orthodontics, often with tooth extraction, clear aligners, or dental braces, followed by growth modification in children or jaw surgery (orthognathic surgery) in adults. Surgery may be required on rare occasions. This may include surgical reshaping to lengthen or shorten the jaw (orthognathic surgery). Wires, plates, or screws may be used to secure the jaw bone, in a manner similar to the surgical stabilization of jaw fractures. Very few people have "perfect" alignment of their teeth. However, most problems are very minor and do not require treatment.
A number of different conditions can cause pain in the general area of the coccyx, but not all involve the coccyx and the muscles attached to it. The first task of diagnosis is to determine whether the pain is related to the coccyx. Physical rectal examination, high resolution x-rays and MRI scans can rule out various causes unrelated to the coccyx, such as Tarlov cysts and pain referred from higher up the spine. Note that, contrary to most anatomical textbooks, most coccyxes consist of several segments: 'fractured coccyx' is often diagnosed when the coccyx is in fact normal or just dislocated at an intercoccygeal joint.
A simple test to determine whether the coccyx is involved is injection of local anesthetic into the area. If the pain relates to the coccyx, this should produce immediate relief.
If the anesthetic test proves positive, then a dynamic (sit/stand) x-ray or MRI scan may show whether the coccyx dislocates when the patient sits.
Use of dynamic x-rays on 208 patients who gave positive results with the anesthetic test showed:
- 31% Not possible to identify the cause of pain
- 27% Hypermobility (excessive flexing of the coccyx forwards and upwards when sitting)
- 22% Posterior luxation (partial dislocation of the coccyx backwards when sitting)
- 14% Spicule (bony spur) on the coccyx
- 5% Anterior luxation (partial dislocation of the coccyx forwards when sitting)
This study found that the pattern of lesions was different depending on the obesity of the patients: obese patients were most likely to have posterior luxation of the coccyx, while thin patients were most likely to have coccygeal .
Before the advent of MRI, electronystagmography and Computed Tomography were employed for diagnosis of acoustic neuroma.
To establish appropriate alignment and occlusion, the sizes of upper and lower front teeth, or upper and lower teeth in general, need to be proportional. Inter-arch tooth size discrepancy (TSD) is defined as a disproportion in the mesio-distal dimensions of teeth of opposing dental arches, which can be seen in 17% to 30% of orthodontic patients.
In dentistry, anodontia, also called anodontia vera, is a rare genetic disorder characterized by the congenital absence of all primary or permanent teeth. It is associated with the group of skin and nerve syndromes called the ectodermal dysplasias. Anodontia is usually part of a syndrome and seldom occurs as an isolated entity.
Congenital absence of permanent teeth can present as hypodontia, usually missing 1 or 2 permanent teeth, or oligodontia that is the congenital absence of 6 or more teeth. Congenital absence of all wisdom teeth, or third molars, is relatively common. Anodontia is the congenital absence of teeth and can occur in some or all teeth (partial anodontia or hypodontia), involve two dentitions or only teeth of the permanent dentition (Dorland's 1998). Approximately 1% of the population suffers from oligodontia. Many denominations are attributed to this anomaly: partial anodontia, hypodontia, oligodontia, the congenital absence, anodontia, bilateral aplasia. Anodontia being the term used in controlled vocabulary Medical Subject Headings (MeSH) from MEDLINE which was developed by the United States National Library of Medicine. The congenital absence of at least one permanent tooth is the most common dental anomaly and may contribute to masticator dysfunction, speech impairment, aesthetic problems, and malocclusion (Shapiro and Farrington 1983). Absence of lateral incisors represents a major stereotype. Individuals with this condition are perceived as socially most aggressive compared with people without anodontia (Shaw 1981).
Overbite is often confused with overjet, which is the distance between the maxillary anterior teeth and the mandibular anterior teeth in the anterior-posterior axis.
"Overbite" may also be used commonly to refer to Class II malocclusion or retrognathia, though this usage can be considered incorrect. This is where the mesiobuccal cusp of the maxillary first molar is situated anterior to the buccal groove of the mandibular first molar; in other words, the mandible (lower jaw) appears too far behind the maxilla. A person presenting with Class II malocclusion may exhibit excessive overbite as well, or may have the opposite problem, which is referred to as openbite (or apertognathia). In the case of apertognathia, the teeth do not overlap enough or at all. The upper teeth protrude past the lower teeth.
Overjet is the extent of horizontal (anterior-posterior) overlap of the maxillary central incisors over the mandibular central incisors. In class II (division I) malocclusion the overjet is increased as the maxillary central incisors are protruded.
Treatment is surgical, and usually is able to be performed once life-threatening injuries are stabilized, to allow the patient to survive the general anesthesia needed for invasive orthopedic restructuring. First a "frontal bar" is used, which refers to the thickened frontal bone above the frontonasal sutures and the superior orbital rim. The facial bones are suspended from the bar by open reduction and internal fixation with titanium plates and screws, and each fracture is fixed, first at its superior attachment to the bar, then at the inferior attachment to the displaced bone. For stability, the zygomaticofrontal suture is usually replaced first, and the palate and alveolar ridge are usually fixed last. Finally, after the horizontal and vertical maxillary buttresses are stabilized, the orbital fractures are fixed last.
Activities that put pressure on the affected area are bicycling, horseback riding, and other activities such as increased sitting that put direct stress on the coccyx. The medical condition is often characterized by pain that worsens with constipation and may be relieved with bowel movement. Rarely, even sexual intercourse can aggravate symptoms.
Orofaciodigital syndrome type 1 is diagnosed through genetic testing. Some symptoms of Orofaciodigital syndrome type 1 are oral features such as, split tongue, benign tumors on the tongue, cleft palate, hypodontia and other dental abnormalities. Other symptoms of the face include hypertelorism and micrognathia. Bodily abnormalities such as webbed, short, joined, or abnormally curved fingers and toes are also symptoms of Orofaciodigital syndrome type 1. The most frequent symptoms are accessory oral frenulum, broad alveolar ridges, frontal bossing, high palate, hypertelorism, lobulated tongue, median cleft lip, and wide nasal bridge. Genetic screening of the OFD1 gene is used to officially diagnose a patient who has the syndrome, this is detected in 85% of individuals who are suspected to have Orofaciodigital syndrome type 1.
The etiology, or cause of edentulism, can be multifaceted. While the extraction of non-restorable or non-strategic teeth by a dentist does contribute to edentulism, the predominant cause of tooth loss in developed countries is periodontal disease. While the teeth may remain completely decay-free, the bone surrounding and providing support to the teeth may reabsorb and disappear, giving rise to tooth mobility and eventual tooth loss. In the radiograph at the beginning of the article, tooth #21 (the lower left first premolar, to the right of #22, the lower left canine) exhibits 50% bone loss, presenting with a distal horizontal defect and a mesial vertical defect. Tooth #22 exhibits roughly 30% bone loss.