Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Genetic testing is being performed in a limited fashion to determine susceptibility to MH. In people with a family history of MH, analysis for "RYR1" mutations may be useful.
The main candidates for testing are those with a close relative who has suffered an episode of MH or have been shown to be susceptible. The standard procedure is the "caffeine-halothane contracture test", CHCT. A muscle biopsy is carried out at an approved research center, under local anesthesia. The fresh biopsy is bathed in solutions containing caffeine or halothane and observed for contraction; under good conditions, the sensitivity is 97% and the specificity 78%. Negative biopsies are "not" definitive, so any patient who is suspected of MH by their medical history or that of blood relatives is generally treated with non-triggering anesthetics, even if the biopsy was negative. Some researchers advocate the use of the "calcium-induced calcium release" test in addition to the CHCT to make the test more specific.
Less invasive diagnostic techniques have been proposed. Intramuscular injection of halothane 6 vol% has been shown to result in higher than normal increases in local among patients with known malignant hyperthermia susceptibility. The sensitivity was 100% and specificity was 75%. For patients at similar risk to those in this study, this leads to a positive predictive value of 80% and negative predictive value of 100%. This method may provide a suitable alternative to more invasive techniques.
A 2002 study examined another possible metabolic test. In this test, intramuscular injection of caffeine was followed by local measurement of the ; those with known MH susceptibility had a significantly higher (63 versus 44 mmHg). The authors propose larger studies to assess the test's suitability for determining MH risk.
Removing the pig from the stressful situation can prevent the episode.
Sedation and glucocorticoids may be beneficial.
Under anaesthesia, dantrolene sodium is a very effective treatment.
Genetic testing enables animals to be removed from the herd if they are positive for the gene. This means that the disorder is rare in the developed world these days.
Stress at slaughter should be minimised in all cases.
When ambient temperature is excessive, humans and many animals cool themselves below ambient by evaporative cooling of sweat (or other aqueous liquid; saliva in dogs, for example); this helps prevent potentially fatal hyperthermia. The effectiveness of evaporative cooling depends upon humidity. Wet-bulb temperature, which takes humidity into account, or more complex calculated quantities such as wet-bulb globe temperature (WBGT), which also takes solar radiation into account, give useful indications of the degree of heat stress and are used by several agencies as the basis for heat-stress prevention guidelines. (Wet-bulb temperature is essentially the lowest skin temperature attainable by evaporative cooling at a given ambient temperature and humidity.)
A sustained wet-bulb temperature exceeding 35 °C is likely to be fatal even to fit and healthy people unclothed in the shade next to a fan; at this temperature, environmental heat gain instead of loss occurs. , wet-bulb temperatures only very rarely exceeded 30 °C anywhere, although significant global warming may change this.
In cases of heat stress caused by physical exertion, hot environments, or protective equipment, prevention or mitigation by frequent rest breaks, careful hydration, and monitoring body temperature should be attempted. However, in situations demanding one is exposed to a hot environment for a prolonged period or must wear protective equipment, a personal cooling system is required as a matter of health and safety. There is a variety of active or passive personal cooling systems; these can be categorized by their power sources and whether they are person- or vehicle-mounted.
Because of the broad variety of operating conditions, these devices must meet specific requirements concerning their rate and duration of cooling, their power source, and their adherence to health and safety regulations. Among other criteria are the user's need for physical mobility and autonomy. For example, active-liquid systems operate by chilling water and circulating it through a garment; the skin surface area is thereby cooled through conduction. This type of system has proven successful in certain military, law enforcement, and industrial applications. Bomb-disposal technicians wearing special suits to protect against improvised explosive devices (IEDs) use a small, ice-based chiller unit that is strapped to one leg; a liquid-circulating garment, usually a vest, is worn over the torso to maintain a safe core body temperature. By contrast, soldiers traveling in combat vehicles can face microclimate temperatures in excess of 65 °C and require a multiple-user, vehicle-powered cooling system with rapid connection capabilities. Requirements for hazmat teams, the medical community, and workers in heavy industry vary further.
Truckloads or railcar loads of PSS-susceptible pigs may be found with a higher-than-average percentage dead on arrival after stressful events such as transport.
Initial signs of the onset of PSS are pyrexia, panting, sweating, tachycardia and arrhythmias. Chronic cases may show muscle atrophy.
Under halothane anaesthesia, pigs will suddenly become rigid and pyrexic.
The halothane challenge was the historical method of diagnosis.
Genetic testing via a PCR enables affected and carrier animals to be found.
Psychologist Melanie Joy has likened PSS to post-traumatic stress disorder in humans.
Hyperthermia is generally diagnosed by the combination of unexpectedly high body temperature and a history that supports hyperthermia instead of a fever. Most commonly this means that the elevated temperature has occurred in a hot, humid environment (heat stroke) or in someone taking a drug for which hyperthermia is a known side effect (drug-induced hyperthermia). The presence of signs and symptoms related to hyperthermia syndromes, such as extrapyramidal symptoms characteristic of neuroleptic malignant syndrome, and the absence of signs and symptoms more commonly related to infection-related fevers, are also considered in making the diagnosis.
If fever-reducing drugs lower the body temperature, even if the temperature does not return entirely to normal, then hyperthermia is excluded.
Patients who develop PSH after traumatic injury have longer hospitalization and longer durations in intensive care in cases where ICU treatment is necessary. Patients often are more vulnerable to infections and spend longer times on ventilators, which can lead to an increased risk of various lung diseases. PSH does not affect mortality rate, but it increases the amount of time it takes a patient to recover from injury, compared to patients with similar injuries who do not develop PSH episodes. It often takes patients who develop PSH longer to reach similar levels of the brain activity seen in patients who do not develop PSH, although PSH patients do eventually reach these same levels.
Diagnosing PSH can be very difficult due to the lack of common terminology in circulation and a lack of diagnostic criteria. Different systems for diagnosis have been proposed, but a universal system has not been embraced. One example of a proposed system of diagnosis requires observation confirmation for four of the six following symptoms: fever greater than 38.3 degrees Celsius, tachycardia classified as a heart rate of 120 bpm or higher, hypertension classified as a systolic pressure higher than 160 mmHg or a pulse pressure higher than 80 mmHg, tachypnea classified as respiration rate higher than 30 breaths per minute, excess sweating, and severe dystonia. Ruling out other diseases or syndromes that show similar symptoms is imperative to diagnosis as well. Sepsis, encephalitis, neuroleptic malignant syndrome,
malignant hyperthermia, lethal catatonia, spinal cord injury (not associated with PSH), seizures, and hydrocephalus (this can be associated with PSH) are examples of diagnoses that should be considered due to the manifestation of similar symptoms before confirming a diagnosis of PSH. PSH has no simple radiological features that can be observed or detected on a scan.
A genetic test is available for Type 1 PSSM. This test requires a blood or hair sample, and is less-invasive than muscle biopsy. However, it may be less useful for breeds that are more commonly affected by Type 2 PSSM, such as light horse breeds. Often a muscle biopsy is recommended for horses displaying clinical signs of PSSM but who have negative results for GYS1 mutation.
A muscle biopsy may be taken from the semimembranosis or semitendinosis (hamstring) muscles. The biopsy is stained for glycogen, and the intensity of stain uptake in the muscle, as well as the presence of any inclusions, helps to determine the diagnosis of PSSM. This test is the only method for diagnosing Type 2 PSSM. Horses with Type 1 PSSM will usually have between 1.5-2 times the normal levels of glycogen in their skeletal muscle. While abnormalities indicating muscle damage can be seen on histologic sections of muscle as young as 1 month of age, abnormal polysaccharide accumulation may take up to 3 years to develop.
The diagnosis is made on the combination of typical symptoms and the appearance on biopsy (tissue sample) from muscle. The name derives from the typical appearance of the biopsy on light microscopy, where the muscle cells have cores that are devoid of mitochondria and specific enzymes.
Respiratory insufficiency develops in a small proportion of cases. Creatine kinase and electromyography (EMG) tend to be normal.
There is no specific treatment but triggering anesthetics are avoided and relatives are screened for "RYR1" mutations as these may make them susceptible to MH.
The prognosis is best when identified early and treated aggressively. In these cases NMS is not usually fatal. In previous studies the mortality rates from NMS have ranged from 20%–38%; however, in the last two decades, mortality rates have fallen below 10% due to early recognition and improved management. Re-introduction to the drug that originally caused NMS to develop may also trigger a recurrence, although in most cases it does not.
Memory impairment is a consistent feature of recovery from NMS, and usually temporary, though in some cases, may become persistent.
Differentiating NMS from other neurological disorders can be very difficult. It requires expert judgement to separate symptoms of NMS from other diseases. Some of the most commonly mistaken diseases are encephalitis, toxic encephalopathy, status epilepticus, heat stroke, and malignant hyperthermia. Due to the comparative rarity of NMS, it is often overlooked and immediate treatment for the syndrome is delayed. Drugs such as cocaine and amphetamine may also produce similar symptoms.
The differential diagnosis is similar to that of hyperthermia, and includes serotonin syndrome. Features which distinguish NMS from serotonin syndrome include bradykinesia, muscle rigidity, and a high white blood cell count.
After centrifuging, the serum of myoglobinuria is clear, where the serum of hemoglobinuria after centrifuge is pink to red.
Horses with PSSM show fewer clinical signs if their exercise is slowly increased over time (i.e. they are slowly conditioned). Additionally, they are much more likely to develop muscle stiffness and rhabdomyolysis if they are exercised after prolonged stall rest.
Horses generally have fewer clinical signs when asked to perform short bouts of work at maximal activity level (aerobic exercise), although they have difficulty achieving maximal speed and tire faster than unaffected horses. They have more muscle damage when asked to perform lower intensity activity over a longer period of time (aerobic activity), due to an energy deficit in the muscle.
The treatment options for hypohidrosis and anhidrosis is limited. Those with hypohidrosis should avoid drugs that can aggravate the condition (see medication-causes). They should limit activities that raise the core body temperature and if exercises are to be performed, they should be supervised and be performed in a cool, sheltered and well-ventilated environment. In instances where the cause is known, treatment should be directed at the primary pathology. In autoimmune diseases, such as Sjogren syndrome and systemic sclerosis, treatment of the underlying disease using immunosuppressive drugs may lead to improvement in hypohidrosis. In neurological diseases, the primary pathology is often irreversible. In these instances, prevention of further neurological damage, such as good glycaemic control in diabetes, is the cornerstone of management. In acquired generalized anhidrosis, spontaneous remission may be observed in some cases. Numerous cases have been reported to respond effectively to systemic corticosteroids. Although an optimum dose and regime has not been established, pulse methylprednisolone (up to 1000 mg ⁄ day) has been reported to have good effect.
Hospitalization and IV hydration should be the first step in any patient suspected of having myoglobinuria or rhabdomyolysis. The goal is to induce a brisk diuresis to prevent myoglobin precipitation and deposition, which can cause acute kidney injury. Mannitol can be added to assist with diuresis. Adding sodium bicarbonate to the IV fluids will cause alkalinzation of the urine, believed to reduce the breakdown of myoglobin into its nephrotoxic metabolites, thus preventing renal damage. Often, IV normal saline is all that is needed to induce diuresis and alkalinize the urine.
Sweat is readily visualized by a topical indicator such as iodinated starch (Minor test) or sodium alizarin sulphonate, both of which undergo a dramatic colour change when moistened by sweat. A thermoregulatory sweat test can evaluate the body’s response to a thermal stimulus by inducing sweating through a hot box ⁄ room, thermal blanket or exercise. Failure of the topical indicator to undergo a colour change during thermoregulatory sweat testing indicates hypohidrosis, and further tests may be required to localize the lesion.
Magnetic resonance imaging of the brain and ⁄ or spinal cord is the best modality for evaluation when the lesion is suspected to be localized to the central nervous system.
Skin biopsies are useful when anhidrosis occurs as part of a dermatological disorder. Biopsy results may reveal the sweat gland destruction, necrosis or fibrosis, in addition to the findings of the primary dermatological disorder.
The diagnosis of HPS is established by clinical findings of hypopigmentation
of the skin and hair, characteristic eye findings, and demonstration of absent
dense bodies on whole mount electron microscopy of platelets. Molecular
genetic testing of the HPS1 gene is available on a clinical basis for
individuals from northwestern Puerto Rico. Molecular testing of the HPS3 gene
is available on a clinical basis for individuals of central Puerto Rican or
Ashkenazi Jewish heritage. Sequence analysis is available on a clinical basis
for mutations in HPS1 and HPS4. Diagnosis of individuals with other types of
HPS is available on a research basis only.
There are little data on prognosis. Rarely, some patients have died in infancy from respiratory failure; otherwise, life expectancy is considered to be normal.
One research priority is to determine the role and nature of malignant hyperthermia in FSS. Such knowledge would benefit possible surgical candidates and the anaesthesiology and surgical teams who would care for them. MH may also be triggered by stress in patients with muscular dystrophies. Much more research is warranted to evaluate this apparent relationship of idiopathic hyperpyrexia, MH, and stress. Further research is wanted to determine epidemiology of psychopathology in FSS and refine therapy protocols.
Postanesthetic shivering (PAS) is shivering after anesthesia.
The intensity of PAS may be graded using the scale described by Crossley and Mahajan:
Postanesthetic shivering is one of the leading causes of discomfort in patients recovering from general anesthesia. It usually results due to the anesthetic inhibiting the body's thermoregulatory capability, although cutaneous vasodilation (triggered by post-operative pain) may also be a causative factor. First-line treatment consists of warming the patient; more persistent/severe cases may be treated with medications such as tramadol, pethidine, clonidine and nefopam, which work by reducing the shivering threshold temperature and reducing the patient's level of discomfort. As these medications may react and/or synergize with the anesthetic agents employed during the surgery, their use is generally avoided when possible.
HPS is one of the rare lung diseases currently being studied by The Rare Lung Diseases Consortium (RLDC). The RLDC is part of the Rare Diseases Clinical Research Network (RDCRN), an initiative of the Office of Rare Diseases Research (ORDR), of the National Center for Advancing Translational Sciences (NCATS). The RLDC is dedicated to developing new diagnostics and therapeutics for patients with rare lung diseases, through collaboration between the NIH, patient organizations and clinical investigators.
The use of oral potassium and avoiding high carbohydrate meals can help treat it according to resent tests. Dr. Jacob O. Levitt, a dermatologist who has hypokalemic periodic paralysis, recently conducted research in to it.
PCCI affects a subset of cancer survivors, though the overall epidemiology and prevalence is not well known and may depend on many factors.
It generally affects about 10–40% of breast cancer patients, with higher rates among pre-menopausal women and patients who receive high-dose chemotherapy.