Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The United States Preventive Services Task Force as of 2013 states there is insufficient evidence to recommend for or against screening for glaucoma. Therefore, there is no national screening program in the US. Screening, however, is recommended starting at age 40 by the American Academy of Ophthalmology.
There is a glaucoma screening program in the UK. Those at risk are advised to have a dilated eye examination at least once a year.
Screening for glaucoma is usually performed as part of a standard eye examination performed by optometrists and ophthalmologists. Testing for glaucoma should include measurements of the intraocular pressure via tonometry, anterior chamber angle examination or gonioscopy, and examination of the optic nerve to look for any visible damage to it, or change in the cup-to-disc ratio and also rim appearance and vascular change. A formal visual field test should be performed. The retinal nerve fiber layer can be assessed with imaging techniques such as optical coherence tomography, scanning laser polarimetry, and/or scanning laser ophthalmoscopy (Heidelberg retinal tomogram).
Owing to the sensitivity of all methods of tonometry to corneal thickness, methods such as Goldmann tonometry should be augmented with pachymetry to measure the central corneal thickness (CCT). A thicker-than-average cornea can result in a pressure reading higher than the 'true' pressure whereas a thinner-than-average cornea can produce a pressure reading lower than the 'true' pressure.
Because pressure measurement error can be caused by more than just CCT (i.e., corneal hydration, elastic properties, etc.), it is impossible to 'adjust' pressure measurements based only on CCT measurements. The frequency doubling illusion can also be used to detect glaucoma with the use of a frequency doubling technology perimeter.
Examination for glaucoma also could be assessed with more attention given to sex, race, history of drug use, refraction, inheritance and family history.
Glaucoma has been classified into specific types:
The diagnosis is clinical. The intraocular pressure (IOP) can be measured in the office in a conscious swaddled infant using a Tonopen or hand-held Goldmann tonometer. Usually, the IOP in normal infants is in the range of 11-14 mmHg. Buphthalmos and Haab's striae can often be seen in case of congenital glaucoma.
PEX is usually diagnosed by an eye doctor who examines the eye using a microscope. The method is termed slit lamp examination and it is done with an "85% sensitivity rate and a 100% specificity rate." Since the symptom of increased pressure within the eye is generally painless until the condition becomes rather advanced, it is possible for people afflicted with glaucoma to be in danger yet not be aware of it. As a result, it is recommended that persons have regular eye examinations to have their levels of intraocular pressure measured, so that treatments can be prescribed before there is any serious damage to the optic nerve and subsequent loss of vision.
It is important that people be examined by someone specializing in low vision care prior to other rehabilitation training to rule out potential medical or surgical correction for the problem and to establish a careful baseline refraction and prescription of both normal and low vision glasses and optical aids. Only a doctor is qualified to evaluate visual functioning of a compromised visual system effectively. The American Medical Association provides an approach to evaluating visual loss as it affects an individual's ability to perform activities of daily living.
Screening adults who have no symptoms is of uncertain benefit.
According to a Cochrane review of 2012, controversies remain regarding type of surgery, non-surgical intervention and age of intervention.
The aims of treatment are as follows:
The elimination of any amblyopia
A cosmetically acceptable ocular alignment
long term stability of eye position
binocular cooperation.
Controversy has arisen regarding the selection and planning of surgical procedures, the timing of surgery and about what constitutes a favourable outcome.
1. Selection and planning
Some ophthalmologists, notably Ing and Helveston, favour a prescribed approach often involving multiple surgical episodes whereas others prefer to aim for full alignment of the eyes in one procedure and let the number of muscles operated upon during this procedure be determined by the size of the squint.
2. Timing and outcome
This debate relates to the technical anatomical difficulties of operating on the very young versus the possibility of an increased potential for binocularity associated with early surgery. Infants are often operated upon at the age of six to nine months of age and in some cases even earlier at three or four months of age. Some emphasize the importance of intervening early such as to keep the duration of the patient's abnormal visual experience to a minimum. Advocates of early surgery believe that those who have their surgery before the age of one are more likely to be able to use both eyes together post-operatively.
A Dutch study (ELISSS) compared early with late surgery in a prospective, controlled, non-randomized, multicenter trial and reported that:
"Children operated early had better gross stereopsis at age six as compared to children operated late. They had been operated more frequently, however, and a substantial number of children in both [originally-recruited] groups had not been operated at all."
Other studies also report better results with early surgery, notably Birch and Stager and Murray et al. but do not comment on the number of operations undertaken. A recent study on 38 children concluded that surgery for infantile esotropia is most likely to result in measureable stereopsis if patient age at alignment is not more than 16 months.
Another study found that for children with infantile esotropia early surgery decreases the risk of dissociated vertical deviation developing after surgery.
Aside the strabismus itself, there are other aspects or conditions that appear to improve after surgery or botulinum toxin eye alignment. Study outcomes have indicated that after surgery the child catches up in development of fine-motor skills (such as grasping a toy and handling a bottle) and of large-muscle skills (such as sitting, standing, and walking) in case a developmental delay was present before. Evidence also indicates that as of the age of six, strabismic children become less accepted by their peers, leaving them potentially exposed to social exclusion starting at this age unless their eye positioning is corrected by this time ("see also:" Psychosocial effects of strabismus).
Some suggest that more time spent outdoors during childhood is effective for prevention.
Various methods have been employed in an attempt to decrease the progression of myopia, although studies show mixed results. Many myopia treatment studies have a number of design drawbacks: small numbers, lack of adequate control group, and failure to mask examiners from knowledge of treatments used.
Despite the temporary nature of the vision loss, those experiencing amaurosis fugax are usually advised to consult a physician immediately as it is a symptom that may herald serious vascular events, including stroke. Restated, “because of the brief interval between the transient event and a stroke or blindness from temporal arteritis, the workup for transient monocular blindness should be undertaken without delay.” If the patient has no history of giant cell arteritis, the probability of vision preservation is high; however, the chance of a stroke reaches that for a hemispheric TIA. Therefore, investigation of cardiac disease is justified.
A diagnostic evaluation should begin with the patient's history, followed by a physical exam, with particular importance being paid to the ophthalmic examination with regards to signs of ocular ischemia. When investigating amaurosis fugax, an ophthalmologic consult is absolutely warranted if available. Several concomitant laboratory tests should also be ordered to investigate some of the more common, systemic causes listed above, including a complete blood count, erythrocyte sedimentation rate, lipid panel, and blood glucose level. If a particular cause is suspected based on the history and physical, additional relevant labs should be ordered.
If laboratory tests are abnormal, a systemic disease process is likely, and, if the ophthalmologic examination is abnormal, ocular disease is likely. However, in the event that both of these routes of investigation yield normal findings or an inadequate explanation, noninvasive duplex ultrasound studies are recommended to identify carotid artery disease. Most episodes of amaurosis fugax are the result of stenosis of the ipsilateral carotid artery. With that being the case, researchers investigated how best to evaluate these episodes of vision loss, and concluded that for patients ranging from 36–74 years old, "...carotid artery duplex scanning should be performed...as this investigation is more likely to provide useful information than an extensive cardiac screening (ECG, Holter 24-hour monitoring, and precordial echocardiography)." Additionally, concomitant head CT or MRI imaging is also recommended to investigate the presence of a “clinically silent cerebral embolism.”
If the results of the ultrasound and intracranial imaging are normal, “renewed diagnostic efforts may be made,” during which fluorescein angiography is an appropriate consideration. However, carotid angiography is not advisable in the presence of a normal ultrasound and CT.
The pressure within the eye is maintained by the balance between the fluid that enters the eye through the ciliary body and the fluid that exits the eye through the trabecular meshwork.
The preferred treatment of congenital glaucoma is surgical not medical. The initial procedures of choice are goniotomy or trabeculotomy if the cornea is clear, and trabeculectomy ab externo if the cornea is hazy. The success rates are similar for both procedures in patients with clear corneas. Trabeculectomy and shunt procedures should be reserved for those cases in which goniotomy or trabeculotomy has failed. Cyclophotocoagulation is necessary in some intractable cases but should be avoided whenever possible because of its potential adverse
effects on the lens and the retina.
Visual impairment has the ability to create consequences for health and well being. Visual impairment is increasing especially among older people. It is recognized that those individuals with visual impairment are likely to have limited access to information and healthcare facilities, and may not receive the best care possible because not all health care professionals are aware of specific needs related to vision.
- A prerequisite of effective health care could very well be having staff that are aware that people may have problems with vision.
- Communication and different ways of being able to communicate with visually impaired clients must be tailored to individual needs and available at all times.
While tonometry, the measuring of IOP and thus a classical instrument in the diagnosis of glaucoma, is not helpful, ophthalmoscopy leads to the diagnosis by showing typical glaucomatous damage, primarily at the optic nerve head, in the absence of elevated IOP. While the excavation of the optic nerve head and the thinning of its rim appear in all kinds of glaucoma (with high tension and with normal tension,in Primary open angle glaucoma (POAG) and in secondary glaucoma), small hemorrhages close to the optic disc have been identified as a characteristic clinical sign of normal tension glaucoma. Visual field is very important to detect NTG. It shows a defect that typically appear deeper, steeper and closer to fixation comparing to patients with POAG.
Since NTG is closely linked to vascular irregularities, a medical check-up by a general practitioner or a specialist in internal medicine is widely recommended in cases of newly diagnosed normal tension glaucoma. An examination that is considered to be of particular importance is a 24-hour monitoring of the blood pressure. NTG patients tend to suffer "dips", sudden and unnoticed drops in blood pressure during sleep.
If the diagnostic workup reveals a systemic disease process, directed therapies to treat that underlying cause should be initiated. If the amaurosis fugax is caused by an atherosclerotic lesion, aspirin is indicated, and a carotid endarterectomy considered based on the location and grade of the stenosis. Generally, if the carotid artery is still patent, the greater the stenosis, the greater the indication for endarterectomy. "Amaurosis fugax appears to be a particularly favorable indication for carotid endarterectomy. Left untreated, this event carries a high risk of stroke; after carotid endarterectomy, which has a low operative risk, there is a very low postoperative stroke rate." However, the rate of subsequent stroke after amaurosis is significantly less than after a hemispheric TIA, therefore there remains debate as to the precise indications for which a carotid endarterectomy should be performed. If the full diagnostic workup is completely normal, patient observation is recommended.
A diagnosis of myopia is typically made by an eye care professional, usually an optometrist or ophthalmologist. During a refraction, an autorefractor or retinoscope is used to give an initial objective assessment of the refractive status of each eye, then a phoropter is used to subjectively refine the patient's eyeglass prescription. Other types of refractive error are hyperopia, astigmatism, and presbyopia.
The center of the cornea shows normal thickness, with an intact central epithelium, but the inferior cornea exhibits a peripheral band of thinning, to about 1–2 mm. The portion of the cornea that is immediately adjacent to the limbus is spared, usually a strip of about 1–2 mm. In PMD we can see high against the rule astigmatism along with horizontal bow ties. The inferior peripheral thinning is seen between the 4 o'clock and 8 o'clock positions.
PMD lacks apical corneal scarring, Rizutti's phenomenon, Munson's sign, and the central corneal thickness is usually normal.
The gold standard diagnostic test for PMD is corneal topography. However, it may not as specific as corneal pachymetry, because corneal topography only evaluates the degree and distribution of surface irregularities on the cornea, not the thickness of the cornea. Corneal topography may show a "crab claw-like" appearance, a finding that is seen in both keratoconus and in pellucid marginal degeneration. Thus, if corneal topography is used for diagnosis, it should be in conjunction with clinical findings of peripheral, inferior corneal thinning.
Ocular hypertension is treated with either medications or laser. Medications that lower intraocular pressure work by decreasing aqueous humor production and/or increasing aqueous humor outflow. Laser trabeculoplasty works by increasing outflow. The cannabinoids found in cannabis sativa and indica (marijuana) have been shown to reduce intraocular pressure, by up to 50% for approximately four to five hours. But due to the duration of effect, significant side-effect profile, and lack of research proving efficacy, the American Glaucoma Society issued a position statement in 2009 regarding the use of marijuana as a treatment for glaucoma.
Intraocular pressure should be measured as part of the routine eye examination.
It is usually only elevated by iridocyclitis or acute-closure glaucoma, but not by relatively benign conditions.
In iritis and traumatic perforating ocular injuries, the intraocular pressure is usually low.
Causes of anisocoria range from benign (normal) to life-threatening conditions.
Clinically, it is important to establish whether anisocoria is more apparent in dim or bright light to clarify whether the larger pupil or smaller pupil is the abnormal one.
- Anisocoria which is worsened (greater asymmetry between the pupils) in the dark suggests the small pupil (which should dilate in dark conditions) is the abnormal pupil and suggests Horner's syndrome or mechanical anisocoria. In Horner's syndrome sympathetic nerve fibers have a defect, therefore the pupil of the involved eye will not dilate in darkness. If the smaller pupil dilates in response to instillation of apraclonidine eye drops, this suggests Horner's syndrome is present.
- Anisocoria which is greater in bright light suggests the larger pupil (which should constrict in bright conditions) is the abnormal pupil. This may suggest Adie tonic pupil, pharmacologic dilation, oculomotor nerve palsy, or damaged iris.
A relative afferent pupillary defect (RAPD) also known as a Marcus Gunn pupil does not cause anisocoria.
Some of the causes of anisocoria are life-threatening, including Horner's syndrome (which may be due to carotid artery dissection) and oculomotor nerve palsy (due to a brain aneurysm, uncal herniation, or head trauma).
If the examiner is unsure whether the abnormal pupil is the constricted or dilated one, and if a one-sided drooping of the eyelid is present then the abnormally sized pupil can be presumed to be the one on the side of the ptosis. This is because Horner's syndrome and oculomotor nerve lesions both cause ptosis.
Anisocoria is usually a benign finding, unaccompanied by other symptoms (physiological anisocoria). Old face photographs of patients often help to diagnose and establish the type of anisocoria.
It should be considered an emergency if a patient develops acute onset anisocoria. These cases may be due to brain mass lesions which cause oculomotor nerve palsy. Anisocoria in the presence of confusion, decreased mental status, severe headache, or other neurological symptoms can forewarn a neurosurgical emergency. This is because a hemorrhage, tumor or another intracranial mass can enlarge to a size where the third cranial nerve (CN III) is compressed, which results in uninhibited dilatation of the pupil on the same side as the lesion.
Untreated glaucoma leads to total blindness. Surgical treatment is required. Presently-utilized surgical procedures include goniotomy, trabeculotomy, or trabeculectomy.
Without treatment, NTG leads to progressive visual field loss and in the last consequence to blindness. The mainstay of conventional glaucoma therapy, reducing IOP by pressure-lowering eye drops or by surgery, is applied in cases of NTG as well. The rationale: the lower the IOP, the less the risk of ganglion cell loss and thus in the long run of visual function. The appearance of disc hemorrhages is always a warning sign that therapeutic approaches are not successful - the small bleedings, usually described as flame-shaped, almost always indicate a progression of the disease.
Besides this classical glaucoma therapy, the vascular component that exists in the majority of NTG patients has to be managed as well. Dips in blood pressure or a generally low blood pressure have to be prevented - which is a rather uncommon approach in modern medicine where high blood pressure is always seen as an immense clinical challenge, affecting large segments of the population. In patients with systemic hypertension under therapy, the blood pressure should not be lowered too rigorously. NTG might be the only severe (= sight-threatening) disease caused in numerous cases by a too low blood pressure. Both magnesium and low dose calcium channel blockers have been employed in the treatment of some NTG patients. There are therapeutic approaches to underlying conditions like Flammer syndrome. A change in nutrition like the intake of sodium-rich foods has been tried as has the oral administration of low-dosed steroids. Lifestyle interventions are recommended in patients with Flammer syndrome like avoidance of fasting and certain stimuli like a cold environment and stress.
In an eye with iridocyclitis, (inflammation of both the iris and ciliary body), the involved pupil will be smaller than the uninvolved, due to reflex muscle spasm of the sphincter muscle of the iris.
Generally, conjunctivitis does not affect the pupils.
With acute angle-closure glaucoma, the pupil is generally fixed in mid-position, oval, and responds sluggishly to light, if at all.
Shallow anterior chamber depth may indicate a predisposition to one form of glaucoma (narrow angle) but requires slit-lamp examination or other special techniques to determine it.
In the presence of a "red eye", a shallow anterior chamber may indicate acute glaucoma, which requires immediate attention.
Mydriatic/cycloplegic agents, such as topical homatropine, which is similar in action to atropine, are useful in breaking and preventing the formation of posterior synechia by keeping the iris dilated and away from the crystalline lens. Dilation of the pupil in an eye with the synechia can cause the pupil to take an irregular, non-circular shape (Dyscoria) as shown in the photograph. If the pupil can be fully dilated during the treatment of iritis, the prognosis for recovery from synechia is good. This is a treatable status.
To subdue the inflammation, use topical corticosteroids. If the intra-ocular pressure is elevated then use a PGA such as Travatan Z.
Scientists are studying different populations and relationships to try to learn more about the disease. They have found associations with different groups but it is not yet clear what the underlying factors are and how they affect different peoples around the world.
- Glaucoma patients. While PEX and glaucoma are believed to be related, there are cases of persons with PEX without glaucoma, and persons with glaucoma without PEX. Generally, a person with PEX is considered as having a risk of developing glaucoma, and vice versa. One study suggested that the PEX was present in 12% of glaucoma patients. Another found that PEX was present in 6% of an "open-angle glaucoma" group. Pseudoexfoliation syndrome is considered to be the most common of identifiable causes of glaucoma. If PEX is diagnosed without glaucoma, there is a high risk of a patient subsequently developing glaucoma.
- Country and region. Prevalence of PEX varies by geography. In Europe, differing levels of PEX were found; 5% in England, 6% in Norway, 4% in Germany, 1% in Greece, and 6% in France. One contrary report suggested that levels of PEX were higher among Greek people. One study of a county in Minnesota found that the prevalence of PEX was 25.9 cases per 100,000 people. It is reportedly high in northern European countries such as Norway, Sweden and Finland, as well as among the Sami people of northern Europe, and high among Arabic populations, but relatively rare among African Americans and Eskimos. In southern Africa, prevalence was found to be 19% of patients in a glaucoma clinic attending to persons of the Bantu tribes.
- Race. It varies considerably according to race.
- Gender. It affects women more than men. One report was that women were three times more likely than men to develop PEX.
- Age. Older persons are more likely to develop PEX. And persons younger than 50 are highly unlikely to have PEX. A study in Norway found that the prevalence of PEX of persons aged 50–59 was 0.4% while it was 7.9% for persons aged 80–89 years. If a person is going to develop PEX, the average age in which this will happen is between 69 and 75 years, according to the Norwegian study. A second corroborating report suggested that it happens primarily to people 70 and older. While older people are more likely to develop PEX, it is not seen as a "normal" part of aging.
- Other diseases. Sometimes PEX is associated with the development of medical problems other than merely glaucoma. There are conflicting reports about whether PEX is associated with problems of the heart or brain; one study suggested no correlations while other studies found statistical links with Alzheimer's disease, senile dementia, cerebral atrophy, chronic cerebral ischemia, stroke, transient ischemic attacks, heart disease, and hearing loss.
The incidence and prevalence of PMD are unknown, and no studies have yet investigated its prevalence or incidence. However, it is generally agreed that PMD is a very rare condition. Some uncertainty regarding the incidence of PMD may be attributed to its confusion with keratoconus. PMD is not linked to race or age, although most cases present early in life, between 20 and 40 years of age. While PMD is usually considered to affect men and women equally, some studies suggest that it may affect men more frequently.
Several diseases have been observed in patients with PMD. However, no causal relationships have been established between any of the associated diseases and the pathogenesis of PMD. Such diseases include: chronic open-angle glaucoma, retinitis pigmentosa, retinal lattice degeneration, scleroderma, kerato-conjunctivitis, eczema, and hyperthyroidism.