Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prognosis varies according with the type of ALCL. During treatment, relapses may occur but these typically remain sensitive to chemotherapy.
Those with ALK positivity have better prognosis than ALK negative ALCL. It has been suggested that ALK-negative anaplastic large-cell lymphomas derive from other T-cell lymphomas that are morphologic mimics of ALCL in a final common pathway of disease progression. Whereas ALK-positive ALCLs are molecularly characterized and can be readily diagnosed, specific immunophenotypic or genetic features to define ALK-negative ALCL are missing and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) remains controversial, although promising diagnostic tools for their recognition have been developed and might be helpful to drive appropriate therapeutic protocols.
Systemic ALK+ ALCL 5-year survival: 70–80%.
Systemic ALK- ALCL 5-year survival: 15–45%.
Primary Cutaneous ALCL: Prognosis is good if there is not extensive involvement regardless of whether or not ALK is positive with an approximately 90% 5-year survival rate.
Breast implant-associated ALCL has an excellent prognosis when the lymphoma is confined to the fluid or to the capsule surrounding the breast implant. This tumor can be recurrent and grow as a mass around the implant capsule or can extend to regional lymph nodes if not properly treated.
The most typical symptom at the time of diagnosis is a mass that is rapidly enlarging and located in a part of the body with multiple lymph nodes.
As the appearance of the hallmark cells, pattern of growth (nesting within lymph nodes) and positivity for EMA may mimic metastatic carcinoma, it is important to include markers for cytokeratin in any diagnostic panel (these will be negative in the case of anaplastic lymphoma). Other mimics include CD30 positive B-cell lymphomas with anaplastic cells (including Hodgkin lymphomas). These are identified by their positivity for markers of B-cell lineage and frequent presence of markers of EBV. Primary cutaneous T-cell lymphomas may also be positive for CD30; these are excluded by their anatomic distribution. ALK positivity may also be seen in some large-cell B-cell lymphomas and occasionally in rhabdomyosarcomas.
Treatment with dose-adjusted EPOCH with rituximab has shown promising initial results in a small series of patients (n=17), with a 100% response rate, and 100% overall survival and progression-free survival at 28 months (median follow-up).
Diagnosis generally requires stained slides of a surgically removed part of a lymph node. Other methods are also commonly used, including cytogenetics and fluorescence in situ hybridization (FISH). Polymerase chain reaction (PCR) and CER3 clonotypic primers are additional methods, but are less often used.
The immunophenotype profile consists of CD5+ (in about 80%), CD10-/+, and it is usually CD5+ and CD10-. CD20+, CD23-/+ (though plus in rare cases). Generally, cyclin D1 is expressed but it may not be required. The workup for Mantle cell lymphoma is similar to the workup for many indolent lymphomas and certain aggressive lymphomas.
Mantle cell lymphoma is a systemic disease with frequent involvement of the bone marrow and gastrointestinal tract (generally showing polyposis in the lining). There is also a not-uncommon leukemic phase, marked by presence in the blood. For this reason, both the peripheral blood and bone marrow are evaluated for the presence of malignant cells. Chest, abdominal, and pelvic CT scans are routinely performed.
Since mantle cell lymphoma may present a lymphomatous polyposis coli and colon involvement is common, colonoscopy is now considered a routine part of the evaluation. Upper endoscopy and neck CT scan may be helpful in selected cases. In some patients with the blastic variant, lumbar puncture is done to evaluate the spinal fluid for involvement.
CT scan - Computerized tomography scan yields images of part or whole body. Gives a large number of slices on X-ray image.
PET scan - Generally of the whole body, shows a three-dimensional image of where previously injected radioactive glucose is metabolized at a rapid rate. Faster-than-average metabolism indicates that cancer is likely present. Metabolism of radioactive glucose may give a false positive, particularly if the patient has exercised before the test.
PET scans are much more effective when the information from them is integrated with that from a CT scan to show more precisely where the cancer activity is located and to more accurately measure the size of tumors.
Historically, hematological malignancies have been most commonly divided by whether the malignancy is mainly located in the blood (leukemia) or in lymph nodes (lymphomas).
However, the influential WHO Classification (published in 2001) placed a greater emphasis on cell lineage.
Relative proportions of hematological malignancies in the United States
With the apparent success of gene expression profiling in separating biologically distinct cases of DLBCL, NOS, some researchers examined whether a similar distinction could be made using immunohistochemical staining (IHC), a widely used method for characterizing tissue samples. This technique uses highly specific antibody-based stains to detect proteins on a microscope slide, and since microarrays are not widely available for routine clinical use, IHC is a desirable alternative. Many of these studies focused on stains against the products of prognostically significant genes which had been implicated in DLBCL gene expression studies. Examples of such genes include BCL2, BCL6, MUM1, LMO2, MYC, and p21. Several algorithms for separating DLBCL cases by IHC arose out of this research, categorizing tissue samples into groups most commonly known as GCB and non-GCB. The correlation between these GCB/non-GCB immunohistochemical groupings and the GCB/ABC groupings used in gene expression profiling studies is uncertain, as is their prognostic value. This uncertainty may arise in part due to poor inter-rater reliability in performing common immunohistochemical stains.
Biopsy of affected lymph nodes or organs confirms the diagnosis, although a needle aspiration of an affected lymph node can increase suspicion of the disease. X-rays, ultrasound and bone marrow biopsy reveal other locations of the cancer. There are now a range of blood tests that can be utilised to aid in the diagnosis of lymphoma. Flow cytometry detects antibodies linked to tumour cell surface antigens in fluid samples or cell suspensions. Polymerase chain reaction (PCR) for antigen receptor rearrangements (PARR) identifies circulating tumour cells based on unique genetic sequences. The canine Lymphoma Blood Test (cLBT) measures multiple circulating biomarkers and utilises a complex algorithm to diagnose lymphoma. This test utilises the acute phase proteins (C-Reactive Protein and Haptoglobin). In combination with basic clinical symptoms, it gives in differential diagnosis the sensitivity 83.5% and specificity 77%. The TK canine cancer panel is an indicator of general neoplastic disease. The stage of the disease is important to treatment and prognosis. Certain blood tests have also been shown to be prognostic.
The stage of the disease is important to treatment and prognosis.
- Stage I - only one lymph node or lymphoid tissue in one organ involved.
- Stage II - lymph nodes in only one area of the body involved.
- Stage III - generalized lymph node involvement.
- Stage IV - any of the above with liver or spleen involvement.
- Stage V - any of the above with blood or bone marrow involvement.
Each stage is divided into either "substage a", those without systemic symptoms; or "substage b", those with systemic symptoms such as fever, loss of appetite, weight loss, and fatigue.
Prognoses and treatments are different for HL and between all the different forms of NHL, and also depend on the grade of tumour, referring to how quickly a cancer replicates. Paradoxically, high-grade lymphomas are more readily treated and have better prognoses: Burkitt lymphoma, for example, is a high-grade tumour known to double within days, and is highly responsive to treatment. Lymphomas may be curable if detected in early stages with modern treatment.
Chemotherapy with CHOP, infusional EPOCH, hyperCVAD, and CODOX-M/IVAC is often used. The prognosis is generally poor, for example 6 to 7 months and 14 months.
The overall 5-year survival rate for MCL is generally 50% (advanced stage MCL) to 70% (for limited-stage MCL).
Prognosis for individuals with MCL is problematic and indexes do not work as well due to patients presenting with advanced stage disease. Staging is used but is not very informative, since the malignant B-cells can travel freely though the lymphatic system and therefore most patients are at stage III or IV at diagnosis. Prognosis is not strongly affected by staging in MCL and the concept of metastasis does not really apply.
The Mantle Cell Lymphoma International Prognostic Index (MIPI) was derived from a data set of 455 advanced stage MCL patients treated in series of clinical trials in Germany/Europe. Of the evaluable population, approximately 18% were treated with high-dose therapy and stem cell transplantation in first remission. The MIPI is able to classify patients into three risk groups: low risk (median survival not reached after median 32 months follow-up and 5-year OS rate of 60%), intermediate risk (median survival 51 months) and high risk (median survival 29 months). In addition to the 4 independent prognostic factors included in the model, the cell proliferation index (Ki-67) was also shown to have additional prognostic relevance. When the Ki67 is available, a biologic MIPI can be calculated.
MCL is one of the few NHLs that can cross the boundary into the brain, yet it can be treated in that event.
There are a number of prognostic indicators that have been studied. There is not universal agreement on their importance or usefulness in prognosis.
Ki-67 is an indicator of how fast cells mature and is expressed in a range from about 10% to 90%. The lower the percentage, the lower the speed of maturity, and the more indolent the disease. Katzenberger et al. Blood 2006;107:3407 graphs survival versus time for subsets of patients with varying Ki-67 indices. He shows median survival times of about one year for 61-90% Ki-67 and nearly 4 years for 5-20% Ki-67 index.
MCL cell types can aid in prognosis in a subjective way. Blastic is a larger cell type. Diffuse is spread through the node. Nodular are small groups of collected cells spread through the node. Diffuse and nodular are similar in behavior. Blastic is faster growing and it is harder to get long remissions. Some thought is that given a long time, some non-blastic MCL transforms to blastic. Although survival of most blastic patients is shorter, some data shows that 25% of blastic MCL patients survive to 5 years. That is longer than diffuse type and almost as long as nodular (almost 7 yrs).
Beta-2 microglobulin is another risk factor in MCL used primarily for transplant patients. Values less than 3 have yielded 95% overall survival to 6 yrs for auto SCT where over 3 yields a median of 44 most overall survival for auto SCT (Khouri 03). This is not yet fully validated.
Testing for high levels of LDH in NHL patients is useful because LDH is released when body tissues break down for "any" reason. While it cannot be used as a sole means of diagnosing NHL, it is a surrogate for tracking tumor burden in those diagnosed by other means. The normal range is approximately 100-190.
For the analysis of a suspected "hematological malignancy", a complete blood count and blood film are essential, as malignant cells can show in characteristic ways on light microscopy. When there is lymphadenopathy, a biopsy from a lymph node is generally undertaken surgically. In general, a bone marrow biopsy is part of the "work up" for the analysis of these diseases. All specimens are examined microscopically to determine the nature of the malignancy. A number of these diseases can now be classified by cytogenetics (AML, CML) or immunophenotyping (lymphoma, myeloma, CLL) of the malignant cells.
The definitive diagnosis is arrived at from tissue, i.e. a biopsy, by a pathologist.
MRI or contrast enhanced CT classically shows multiple ring-enhancing lesions in the deep white matter. The major differential diagnosis (based on imaging) is cerebral toxoplasmosis, which is also prevalent in AIDS patients and also presents with a ring-enhanced lesion, although toxoplasmosis generally presents with more lesions and the contrast enhancement is typically more pronounced. Imaging techniques cannot distinguish the two conditions with certainty, and cannot exclude other diagnoses. Thus, patients undergo a brain biopsy.
The two types of lymphoma research are clinical or translational research and basic research. Clinical/translational research focuses on studying the disease in a defined and generally immediately patient-applicable way, such as testing a new drug in patients. Studies may focus on effective means of treatment, better ways of treating the disease, improving the quality of life for patients, or appropriate care in remission or after cures. Hundreds of clinical trials are being planned or conducted at any given time.
Basic science research studies the disease process at a distance, such as seeing whether a suspected carcinogen can cause healthy cells to turn into lymphoma cells in the laboratory or how the DNA changes inside lymphoma cells as the disease progresses. The results from basic research studies are generally less immediately useful to patients with the disease, but can improve scientists' understanding of lymphoma and form the foundation for future, more effective treatments.
Of all cancers involving the same class of blood cell, 2.3% of cases are Burkitt lymphoma. Epstein-Barr virus infection is strongly correlated with this cancer.
Multiagent chemotherapy is recommended, but the preferred regimen is controversial, as is consolidative radiotherapy.
Evidence is conflicting on the prognostic significance of chloromas in patients with acute myeloid leukemia. In general, they are felt to augur a poorer prognosis, with a poorer response to treatment and worse survival; however, others have reported chloromas associate, as a biologic marker, with other poor prognostic factors, and therefore do not have independent prognostic significance.
Patients with AIDS and PCNSL have a median survival of only 4 months with radiotherapy alone. Untreated, median survival is only 2.5 months, sometimes due to concurrent opportunistic infections rather than the lymphoma itself. Extended survival has been seen, however, in a subgroup of AIDS patients with CD4 counts of more than 200 and no concurrent opportunistic infections, who can tolerate aggressive therapy consisting of either methotrexate monotherapy or vincristine, procarbazine, or whole brain radiotherapy. These patients have a median survival of 10–18 months. Of course, highly active antiretroviral therapy (HAART) is critical for prolonged survival in any AIDS patient, so compliance with HAART may play a role in survival in patients with concurrent AIDS and PCNSL.
Other entities with similar clinical presentations include osteomyelitis, osteosarcoma (especially telangiectatic osteosarcoma), and eosinophilic granuloma. Soft-tissue neoplasms such as pleomorphic undifferentiated sarcoma (malignant fibrous histiocytoma) that erode into adjacent bone may also have a similar appearance.
Definitive diagnosis of a chloroma usually requires a biopsy of the lesion in question. Historically, even with a tissue biopsy, pathologic misdiagnosis was an important problem, particularly in patients without a clear pre-existing diagnosis of acute myeloid leukemia to guide the pathologist. In one published series on chloroma, the authors stated that 47% of the patients were initially misdiagnosed, most often as having a malignant lymphoma.
However, with advances in diagnostic techniques, the diagnosis of chloromas can be made more reliable. Traweek et al. described the use of a commercially available panel of monoclonal antibodies, against myeloperoxidase, CD68, CD43, and CD20, to accurately diagnose chloroma via immunohistochemistry and differentiate it from lymphoma. Nowadays, immunohistochemical staining using monoclonal antibodies against CD33 and CD117 would be the mainstay of diagnosis. The increasingly refined use of flow cytometry has also facilitated more accurate diagnosis of these lesions.
The factors of poor prognosis for patients with thyroid lymphoma are advanced stage of the tumor, large size (>10 cm) as well as spreading to mediastinum. The overall survival for primary thyroid lymphoma is 50% to 70%, ranging from 80% in stage IE to less than 36% in stage IIE and IVE in 5 years.
On conventional radiographs, the most common osseous presentation is a permeative lytic lesion with periosteal reaction. The classic description of lamellated or "onion-skin" type periosteal reaction is often associated with this lesion. Plain films add valuable information in the initial evaluation or screening. The wide zone of transition (e.g. permeative) is the most useful plain film characteristic in differentiation of benign versus aggressive or malignant lytic lesions.
Magnetic resonance imaging (MRI) should be routinely used in the work-up of malignant tumors. It will show the full bony and soft tissue extent and relate the tumor to other nearby anatomic structures (e.g. vessels). Gadolinium contrast is not necessary as it does not give additional information over noncontrast studies, though some current researchers argue that dynamic, contrast-enhanced MRI may help determine the amount of necrosis within the tumor, thus help in determining response to treatment prior to surgery.
Computed axial tomography(CT) can also be used to define the extraosseous extent of the tumor, especially in the skull, spine, ribs, and pelvis. Both CT and MRI can be used to follow response to radiation and/or chemotherapy. Bone scintigraphy can also be used to follow tumor response to therapy.
In the group of malignant small round cell tumors which include Ewing's sarcoma, bone lymphoma, and small cell osteosarcoma, the cortex may appear almost normal radiographically, while permeative growth occurs throughout the Haversian channels. These tumours may be accompanied by a large soft-tissue mass while almost no bone destruction is visible. The radiographs frequently do not shown any signs of cortical destruction.
Radiographically, Ewing's sarcoma presents as "moth-eaten" destructive radiolucencies of the medulla and erosion of the cortex with expansion.
Diagnosing ALL begins with a thorough medical history, physical examination, complete blood count, and blood smears. While many symptoms of ALL can be found in common illnesses, persistent or unexplained symptoms raise suspicion of cancer. Because many features on the medical history and exam are not specific to ALL, further testing is often needed. A large number of white blood cells and lymphoblasts in the circulating blood can be suspicious for ALL because they indicate a rapid production of lymphoid cells in the marrow. The higher these numbers typically points to a worse prognosis. While white blood cell counts at initial presentation can vary significantly, circulating lymphoblast cells are seen on peripheral blood smears in the majority of cases.
A bone marrow biopsy provides conclusive proof of ALL, typically with >20% of all cells being leukemic lymphoblasts. A lumbar puncture (also known as a spinal tap) can determine whether the spinal column and brain have been invaded. Brain and spinal column involvement can be diagnosed either through confirmation of leukemic cells in the lumbar puncture or through clinical signs of CNS leukemia as described above. Laboratory tests that might show abnormalities include blood count, kidney function, electrolyte, and liver enzyme tests.
Pathological examination, cytogenetics (in particular the presence of Philadelphia chromosome), and immunophenotyping establish whether the leukemic cells are myeloblastic (neutrophils, eosinophils, or basophils) or lymphoblastic (B lymphocytes or T lymphocytes). Cytogenetic testing on the marrow samples can help classify disease and predict how aggressive the disease course will be. Different mutations have been associated with shorter or longer survival. Immunohistochemical testing may reveal TdT or CALLA antigens on the surface of leukemic cells. TdT is a protein expressed early in the development of pre-T and pre-B cells, whereas CALLA is an antigen found in 80% of ALL cases and also in the "blast crisis" of CML.
Medical imaging (such as ultrasound or CT scanning) can find invasion of other organs commonly the lung, liver, spleen, lymph nodes, brain, kidneys, and reproductive organs.
Cytogenetic analysis has shown different proportions and frequencies of genetic abnormalities in cases of ALL from different age groups. This information is particularly valuable for classification and can in part explain different prognosis of these groups. In regards to genetic analysis, cases can be stratified according to ploidy, number of sets of chromosomes in the cell, and specific genetic abnormalities, such as translocations. Hyperdiploid cells are defined as cells with more than 50 chromosomes, while hypodiploid is defined as cells with less than 44 choromosomes. Hyperdiploid cases tend to carry good prognosis while hypodiploid cases do not. For example, the most common specific abnormality in childhood B-ALL is the t(12;21) "ETV6"-"RUNX1" translocation, in which the "RUNX1" gene, encoding a protein involved in transcriptional control of hemopoiesis, has been translocated and repressed by the "ETV6"-"RUNX1" fusion protein.
Below is a table with the frequencies of some cytogenetic translocations and molecular genetic abnormalities in ALL.
Due to the high risk of recurrence and ensuing problems, close monitoring of dogs undergoing chemotherapy is important. The same is true for dogs that have entered remission and ceased treatment. Monitoring for disease and remission/recurrence is usually performed by palpation of peripheral lymph nodes. This procedure detects gross changes in peripheral lymph nodes. Some of the blood tests used in diagnosing lymphoma also offer greater objectivity and provide an earlier warning of an animal coming out of remission.
Complete cure is rare with lymphoma and treatment tends to be palliative, but long remission times are possible with chemotherapy. With effective protocols, average first remission times are 6 to 8 months. Second remissions are shorter and harder to accomplish. Average survival is 9 to 12 months. The most common treatment is a combination of cyclophosphamide, vincristine, prednisone, L-asparaginase, and doxorubicin. Other chemotherapy drugs such as chlorambucil, lomustine (CCNU), cytosine arabinoside, and mitoxantrone are sometimes used in the treatment of lymphoma by themselves or in substitution for other drugs. In most cases, appropriate treatment protocols cause few side effects, but white blood cell counts must be monitored.
Allogeneic and autologous stem cell transplantations (as is commonly done in humans) have recently been shown to be a possible treatment option for dogs. Most of the basic research on transplantation biology was generated in dogs. Current cure rates using stem cell therapy in dogs approximates that achieved in humans, 40-50%.
When cost is a factor, prednisone used alone can improve the symptoms dramatically, but it does not significantly affect the survival rate. The average survival times of dogs treated with prednisone and untreated dogs are both one to two months. Using prednisone alone can cause the cancer to become resistant to other chemotherapy agents, so it should only be used if more aggressive treatment is not an option.
Isotretinoin can be used to treat cutaneous lymphoma.