Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of hemolytic anemia can be suspected on the basis of a constellation of symptoms and is largely based on the presence of anemia, an increased proportion of immature red cells (reticulocytes) and a decrease in the level of haptoglobin, a protein that binds free hemoglobin. Examination of a peripheral blood smear and some other laboratory studies can contribute to the diagnosis. Symptoms of hemolytic anemia include those that can occur in all anemias as well as the specific consequences of hemolysis. All anemias can cause fatigue, shortness of breath, decreased ability to exercise when severe. Symptoms specifically related to hemolysis include jaundice and dark colored urine due to the presence of hemoglobin (hemaglobinuria). When restricted to the morning hemaglobinuria may suggest paroxysmal nocturnal haemoglobinuria. Direct examination of blood under a microscope in a peripheral blood smear may demonstrate red blood cell fragments called schistocytes, red blood cells that look like spheres (spherocytes), and/or red blood cells missing small pieces (bite cells). An increased number of newly made red blood cells (reticulocytes) may also be a sign of bone marrow compensation for anemia. Laboratory studies commonly used to investigate hemolytic anemia include blood tests for breakdown products of red blood cells, bilirubin and lactate dehydrogenase, a test for the free hemoglobin binding protein haptoglobin, and the direct Coombs test to evaluate antibody binding to red blood cells suggesting autoimmune hemolytic anemia.
Definitive therapy depends on the cause:
- Symptomatic treatment can be given by blood transfusion, if there is marked anemia. A positive Coombs test is a relative contraindication to transfuse the patient. In cold hemolytic anemia there is advantage in transfuse warmed blood
- In severe immune-related hemolytic anemia, steroid therapy is sometimes necessary.
- In steroid resistant cases, consideration can be given to rituximab or addition of an immunosuppressant ( azathioprine, cyclophosphamide)
- Association of methylprednisolone and intravenous immunoglobulin can control hemolysis in acute severe cases
- Sometimes splenectomy can be helpful where extravascular hemolysis, or hereditary spherocytosis, is predominant (i.e., most of the red blood cells are being removed by the spleen).
In HbS, the complete blood count reveals haemoglobin levels in the range of 6–8 g/dl with a high reticulocyte count (as the bone marrow compensates for the destruction of sickled cells by producing more red blood cells). In other forms of sickle-cell disease, Hb levels tend to be higher. A blood film may show features of hyposplenism (target cells and Howell-Jolly bodies).
Sickling of the red blood cells, on a blood film, can be induced by the addition of sodium metabisulfite. The presence of sickle haemoglobin can also be demonstrated with the "sickle solubility test". A mixture of haemoglobin S (Hb S) in a reducing solution (such as sodium dithionite) gives a turbid appearance, whereas normal Hb gives a clear solution.
Abnormal haemoglobin forms can be detected on haemoglobin electrophoresis, a form of gel electrophoresis on which the various types of haemoglobin move at varying speeds. Sickle-cell haemoglobin (HgbS) and haemoglobin C with sickling (HgbSC)—the two most common forms—can be identified from there. The diagnosis can be confirmed with high-performance liquid chromatography. Genetic testing is rarely performed, as other investigations are highly specific for HbS and HbC.
An acute sickle-cell crisis is often precipitated by infection. Therefore, a urinalysis to detect an occult urinary tract infection, and chest X-ray to look for occult pneumonia should be routinely performed.
People who are known carriers of the disease often undergo genetic counseling before they have a child. A test to see if an unborn child has the disease takes either a blood sample from the fetus or a sample of amniotic fluid. Since taking a blood sample from a fetus has greater risks, the latter test is usually used. Neonatal screening provides not only a method of early detection for individuals with sickle-cell disease, but also allows for identification of the groups of people that carry the sickle cell trait.
The gold standard for the diagnosis of Vitamin B deficiency is a low blood level of Vitamin B. A low level of blood Vitamin B is a finding that normally can and should be treated by injections, supplementation, or dietary or lifestyle advice, but it is not a diagnosis. Hypovitaminosis B can result from a number of mechanisms, including those listed above. For determination of cause, further patient history, testing, and empirical therapy may be clinically indicated.
A measurement of methylmalonic acid (methylmalonate) can provide an indirect method for partially differentiating Vitamin B and folate deficiencies. The level of methylmalonic acid is not elevated in folic acid deficiency. Direct measurement of blood cobalamin remains the gold standard because the test for elevated methylmalonic acid is not specific enough. Vitamin B is one necessary prosthetic group to the enzyme methylmalonyl-coenzyme A mutase. Vitamin B deficiency is but one among the conditions that can lead to dysfunction of this enzyme and a buildup of its substrate, methylmalonic acid, the elevated level of which can be detected in the urine and blood.
Due to the lack of available radioactive Vitamin B, the Schilling test is now largely a historical artifact. The Schilling test was performed in the past to help determine the nature of the vitamin B deficiency. An advantage of the Schilling test was that it often included Vitamin B with intrinsic factor.
From birth to five years of age, penicillin daily, due to the immature immune system that makes them more prone to early childhood illnesses is recommended. Dietary supplementation of folic acid had been previously recommended by the WHO. A 2016 Cochrane review of its use found "the effect of supplementation on anaemia and any symptoms of anaemia remains unclear" due to a lack of medical evidence.
The blood film can point towards vitamin deficiency:
- Decreased red blood cell (RBC) count and hemoglobin levels
- Increased mean corpuscular volume (MCV, >100 fL) and mean corpuscular hemoglobin (MCH)
- Normal mean corpuscular hemoglobin concentration (MCHC, 32–36 g/dL)
- The reticulocyte count is decreased due to destruction of fragile and abnormal megaloblastic erythroid precursor.
- The platelet count may be reduced.
- Neutrophil granulocytes may show multisegmented nuclei ("senile neutrophil"). This is thought to be due to decreased production and a compensatory prolonged lifespan for circulating neutrophils, which increase numbers of nuclear segments with age.
- Anisocytosis (increased variation in RBC size) and poikilocytosis (abnormally shaped RBCs).
- Macrocytes (larger than normal RBCs) are present.
- Ovalocytes (oval-shaped RBCs) are present.
- Howell-Jolly bodies (chromosomal remnant) also present.
Blood chemistries will also show:
- An increased lactic acid dehydrogenase (LDH) level. The isozyme is LDH-2 which is typical of the serum and hematopoetic cells.
- Increased homocysteine and methylmalonic acid in Vitamin B deficiency
- Increased homocysteine in folate deficiency
Normal levels of both methylmalonic acid and total homocysteine rule out clinically significant cobalamin deficiency with virtual certainty.
Bone marrow (not normally checked in a patient suspected of megaloblastic anemia) shows megaloblastic hyperplasia.
The serum iron and total iron-binding capacity (transferrin) are helpful but not diagnostic; it is quiet possible to have co-existing ineffective iron utilisation and iron deficiency, as determined by bone marrow iron status, e.g. in rheumatoid arthritis.
Typical causes of microcytic anemia include:
- Childhood
- Iron deficiency anemia, by far the most common cause of anemia in general and of microcytic anemia in particular
- Thalassemia
- Adulthood
- Iron deficiency anemia
- Sideroblastic anemia, In congenital sideroblastic anemia the MCV (mean corpuscular volume) is either low or normal. In contrast, the MCV is usually high in the much more common acquired sideroblastic anemia.
- Anemia of chronic disease, although this more typically causes normochromic, normocytic anemia. Microcytic anemia has been discussed by Weng et al.
- Lead poisoning
- Vitamin B (pyridoxine) deficiency
Other causes that are typically thought of as causing normocytic anemia or macrocytic anemia must also be considered, and the presence of two or more causes of anemia can distort the typical picture.
There are five main causes of microcytic anemia forming the acronym TAILS. Thalassemia, Anemia of chronic disease, Iron deficiency, Lead poisoning and Congenital sideroblastic anemia. Only the first three are common in most parts of the world. In theory, these three can be differentiated by their red blood cell (RBC) morphologies. Anemia of chronic disease shows unremarkable RBCs, iron deficiency shows anisocytosis, anisochromia and elliptocytosis, and thalessemias demonstrate target cells and coarse basophilic stippling. In practice though elliptocytes and anisocytosis are often seen in thalessemia and target cells occasionally in iron deficiency. All three may show unremarkable RBC morphology. Coarse basophlic stippling is one reliable morphologic finding of thalessemia which does not appear in iron deficiency or anemia of chronic disease. The patient should be in an ethnically at risk group and the diagnosis is not confirmed without a confirmatory method such as hemoglobin HPLC, H body staining, molecular testing or another reliable method. Course basophlic stippling occurs in other cases as seen in Table 1
A potential complication that may occur in children that suffer acute anemia with a hemoglobin count below 5.5 g/dl is silent stroke A silent stroke is a type of stroke that does not have any outward symptoms (asymptomatic), and the patient is typically unaware they have suffered a stroke. Despite not causing identifiable symptoms a silent stroke still causes damage to the brain, and places the patient at increased risk for both transient ischemic attack and major stroke in the future.
As always, laboratory values have to be interpreted with the lab's reference values in mind and considering all aspects of the individual clinical situation.
Serum ferritin can be elevated in inflammatory conditions; so a normal serum ferritin may not always exclude iron deficiency, and the utility is improved by taking a concurrent C-reactive protein (CRP). The level of serum ferritin that is viewed as "high" depends on the condition. For example, in inflammatory bowel disease the threshold is 100, where as in chronic heart failure (CHF) the levels are 200.
Blood transfusion is sometimes used to treat iron deficiency with hemodynamic instability. Sometimes transfusions are considered for people who have chronic iron deficiency or who will soon go to surgery, but even if such people have low hemoglobin, they should be given oral treatment or intravenous iron.
Those homozygous (Hb LeporeLepore; a very rare situation) or compound heterozygous (Hb Lepore-Β-thalassaemia) might suffer from a severe anaemia. They should be managed in a comprehensive multi-disciplinary program of care. Management includes a regular course of blood transfusions, although the clinical severity in compound (double) heterozygotes can range from minor to major, depending on the combination of genes that have caused the condition.
The diagnosis is made after a complete blood count, a routine blood test. The absolute neutrophil count in this test will be below 500, and can reach 0 cells/mm³. Other kinds of blood cells are typically present in normal numbers.
To formally diagnose agranulocytosis, other pathologies with a similar presentation must be excluded, such as aplastic anemia, paroxysmal nocturnal hemoglobinuria, myelodysplasia and leukemias. This requires a bone marrow examination that shows normocellular (normal amounts and types of cells) blood marrow with underdeveloped promyelocytes. These underdeveloped promyelocytes, if fully matured, would have been the missing granulocytes.
Microcytic anaemia is any of several types of anaemia characterized by small red blood cells (called microcytes). The normal mean corpuscular volume (abbreviated to MCV on full blood count results) is 80-100 fL, with smaller cells (100 fL) as macrocytic (the latter occur in macrocytic anemia).The MCV is the average red blood cell size.
In microcytic anaemia, the red blood cells (erythrocytes) are usually also hypochromic, meaning that the red blood cells appear paler than usual. This is reflected by a lower-than-normal mean corpuscular hemoglobin concentration (MCHC), a measure representing the amount of hemoglobin per unit volume of fluid inside the cell; normally about 320-360 g/L or 32-36 g/dL. Typically, therefore, anemia of this category is described as "microcytic, hypochromic anaemia".
Diagnosis of alpha-thalassemia is primarily by laboratory evaluation and haemoglobin electrophoresis. Alpha-thalassemia can be mistaken for iron-deficiency anaemia on a full blood count or blood film, as both conditions have a microcytic anaemia. Serum iron and serum ferritin can be used to exclude iron-deficiency anaemia.
1- Secondary anaemias
- Chronic infection/inflammation
- Malignancy
2- Thalassaemia
3- Sideroblastic anaemia
In patients that have no symptoms of infection, management consists of close monitoring with serial blood counts, withdrawal of the offending agent (e.g., medication), and general advice on the significance of fever.
Transfusion of granulocytes would have been a solution to the problem. However, granulocytes live only ~10 hours in the circulation (for days in spleen or other tissue), which gives a very short-lasting effect. In addition, there are many complications of such a procedure.
In developing new chemotherapeutics(化疗方法),the efficacy of the drug against the disease is often balanced against the likely level of myelotoxicity the drug will cause. In-vitro colony forming cell (CFC) assays using normal human bone marrow grown in appropriate semi-solid media such as ColonyGEL have been shown to be useful in predicting the level of clinical myelotoxicity a certain compound might cause if administered to humans. These predictive in-vitro assays reveal effects the administered compounds have on the bone marrow progenitor cells that produce the various mature cells in the blood and can be used to test the effects of single drugs or the effects of drugs administered in combination with others.
Genetic testing for the presence of mutations in protein molecules is considered to be a confirmatory testing technique. It is important to know the risks regarding the transmission and dangers of HPP.
Those with hereditary elliptocytosis have a good prognosis, only those with very severe disease have a shortened life expectancy.
The diagnosis of pyruvate kinase deficiency can be done by full blood counts (differential blood counts) and reticulocyte counts. Other methods include direct enzyme assays, which can determine pyruvate kinase levels in erythrocytes separated by density centrifugation, as well as direct DNA sequencing. For the most part when dealing with pyruvate kinase deficiency, these two diagnostic techniques are complementary to each other as they both contain their own flaws. Direct enzyme assays can diagnose the disorder and molecular testing confirms the diagnosis or vice versa. Furthermore, tests to determine bile salts (bilirubin) can be used to see whether the gall bladder has been compromised.
Blood is generally drawn from the father to help determine fetal antigen status. If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen. This test can help with knowledge for the current baby, as well as aid in the decision about future pregnancies. With RhD, the test is called the RhD genotype. With RhCE, and Kell antigen it is called an antigen phenotype.
In some cases, the direct coombs will be negative but severe, even fatal HDN can occur. An indirect coombs needs to be run in cases of anti-C, anti-c, and anti-M. Anti-M also recommends antigen testing to rule out the presence of HDN.
- Hgb - the infant’s hemoglobin should be tested from cord blood.
- Reticulocyte count - Reticulocytes are elevated when the infant is producing more blood to combat anemia. A rise in the retic count can mean that an infant may not need additional transfusions. Low retic is observed in infants treated with IUT and in those with HDN from anti-Kell
- Neutrophils - as Neutropenia is one of the complications of HDN, the neutrophil count should be checked.
- Thrombocytes - as thrombocytopenia is one of the complications of HDN, the thrombocyte count should be checked.
- Bilirubin should be tested from cord blood.
- Ferritin - because most infants affected by HDN have iron overload, a ferritin must be run before giving the infant any additional iron.
- Newborn Screening Tests - Transfusion with donor blood during pregnancy or shortly after birth can affect the results of the Newborn Screening Tests. It is recommended to wait and retest 10–12 months after last transfusion. In some cases, DNA testing from saliva can be used to rule out certain conditions.
Bone marrow suppression due to anti-cancer chemotherapy is much harder to treat and often involves hospital admission, strict infection control, and aggressive use of intravenous antibiotics at the first sign of infection.
G-CSF is used clinically (see Neutropenia) but tests in mice suggest it may lead to bone loss.
GM-CSF has been compared to G-CSF as a treatment of chemotherapy-induced myelosuppression/Neutropenia.
Treatment for alpha-thalassemia may consist of blood transfusions, and possible splenectomy; additionally, gallstones may be a problem that would require surgery. Secondary complications from febrile episode should be monitored, and most individuals live without any need for treatment
Additionally, stem cell transplantation should be considered as a treatment (and cure), which is best done in early age. Other options, such as gene therapy, are still being developed.
Drug induced hemolysis has large clinical relevance. It occurs when drugs actively provoke red blood cell destruction. It can be divided in the following manner:
- Drug-induced autoimmune hemolytic anemia
- Drug-induced nonautoimmune hemolytic anemia
A total of four mechanisms are usually described, but there is some evidence that these mechanisms may overlap.