Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Diagnosis is clinical and initially consists of ruling out more common conditions, disorders, and diseases, and usually begins at the general practitioner level. A doctor may conduct a basic neurological exam, including coordination, strength, reflexes, sensation, etc. A doctor may also run a series of tests that include blood work and MRIs.
From there, a patient is likely to be referred to a neurologist or a neuromuscular specialist. The neurologist or specialist may run a series of more specialized tests, including needle electromyography EMG/ and nerve conduction studies (NCS) (these are the most important tests), chest CT (to rule out paraneoplastic) and specific blood work looking for voltage-gated potassium channel antibodies, acetylcholine receptor antibody, and serum immunofixation, TSH, ANA ESR, EEG etc. Neuromyotonia is characterized electromyographically by doublet, triplet or multiplet single unit discharges that have a high, irregular intraburst frequency. Fibrillation potentials and fasciculations are often also present with electromyography.
Because the condition is so rare, it can often be years before a correct diagnosis is made.
NMT is not fatal and many of the symptoms can be controlled. However, because NMT mimics some symptoms of motor neuron disease (ALS) and other more severe diseases, which may be fatal, there can often be significant anxiety until a diagnosis is made. In some rare cases, acquired neuromyotonia has been misdiagnosed as amyotrophic lateral sclerosis (ALS) particularly if fasciculations may be evident in the absence of other clinical features of ALS. However, fasciculations are rarely the first sign of ALS as the hallmark sign is weakness. Similarly, multiple sclerosis has been the initial misdiagnosis in some NMT patients. In order to get an accurate diagnosis see a trained neuromuscular specialist.
In terms of the differential diagnosis for polyneuropathy one must look at the following:
Diagnostic procedures that may reveal muscular disorders include direct clinical observations. This usually starts with the observation of bulk, possible atrophy or loss of muscle tone. Neuromuscular disease can also be diagnosed by testing the levels of various chemicals and antigens in the blood, and using electrodiagnostic medicine tests including electromyography (measuring electrical activity in muscles) and nerve conduction studies.
In neuromuscular disease evaluation, it is important to perform musculoskeletal and neurologic examinations. Genetic testing is an important part of diagnosing inherited neuromuscular conditions.
The diagnosis of polyneuropathies begins with a history and physical examination to ascertain the pattern of the disease process (such as-arms, legs, distal, proximal) if they fluctuate, and what deficits and pain are involved. If pain is a factor, determining where and how long the pain has been present is important, one also needs to know what disorders are present within the family and what diseases the person may have. Although diseases often are suggested by the physical examination and history alone, tests that may be employed include: electrodiagnostic testing, serum protein electrophoresis, nerve conduction studies, urinalysis, serum creatine kinase (CK) and antibody testing (nerve biopsy is sometimes done).
Other tests may be used, especially tests for specific disorders associated with polyneuropathies, quality measures have been developed to diagnose patients with distal symmetrical polyneuropathy (DSP).
Diagnosis requires a neurological examination. A neuroimaging exam can also be helpful for diagnosis. For example, an MRI can be used to discover the atrophy of the specific brain regions.
MMND can be differentially diagnosed from similar conditions like Fazio-Londe syndrome and amyotrophic lateral sclerosis, in that those two conditions don't involve sensorineural hearing loss, while MMND, Brown-Vialetto-Van Laere syndrome (BVVLS), Nathalie syndrome, and Boltshauser syndrome do. Nathalie syndrome does not involve lower cranial nerve symptoms, so it can be excluded if those are present. If there is evidence of lower motor neuron involvement, Boltshauser syndrome can be excluded. Finally, if there is a family history of the condition, then BVVLS is more likely, as MMND tends to be sporadic.
CMT can be diagnosed through symptoms, through measurement of the speed of nerve impulses (nerve conduction studies), through biopsy of the nerve, and through DNA testing. DNA testing can give a definitive diagnosis, but not all the genetic markers for CMT are known. CMT is first noticed when someone develops lower leg weakness, such as foot drop; or foot deformities, including hammertoes and high arches. But signs alone do not lead to diagnosis. Patients must be referred to a physician specialising in neurology or rehabilitation medicine. To see signs of muscle weakness, the neurologist asks patients to walk on their heels or to move part of their leg against an opposing force. To identify sensory loss, the neurologist tests for deep tendon reflexes, such as the knee jerk, which are reduced or absent in CMT. The doctor also asks about family history, because CMT is hereditary. The lack of family history does not rule out CMT, but helps rule out other causes of neuropathy, such as diabetes or exposure to certain chemicals or drugs.
In 2010, CMT was one of the first diseases where the genetic cause of a particular patient's disease was precisely determined by sequencing the whole genome of an affected individual. This was done by the scientists employed by the Charcot Marie Tooth Association (CMTA) Two mutations were identified in a gene, SH3TC2, known to cause CMT. Researchers then compared the affected patient's genome to the genomes of the patient's mother, father, and seven siblings with and without the disease. The mother and father each had one normal and one mutant copy of this gene, and had mild or no symptoms. The offspring that inherited two mutant genes presented fully with the disease.
The severity of symptoms vary widely even for the same type of CMT. There have been cases of monozygotic twins with varying levels of disease severity, showing that identical genotypes are associated with different levels of severity (see penetrance). Some patients are able to live a normal life and are almost or entirely asymptomatic. A 2007 review stated that "Life expectancy is not known to be altered in the majority of cases".
Neuromyotonia is a type of peripheral nerve hyperexcitability. Peripheral nerve hyperexcitability is an umbrella diagnosis that includes (in order of severity of symptoms from least severe to most severe) benign fasciculation syndrome, cramp fasciculation syndrome, and neuromyotonia. Some doctors will only give the diagnosis of peripheral nerve hyperexcitability as the differences between the three are largely a matter of the severity of the symptoms and can be subjective. However, some objective EMG criteria have been established to help distinguish between the three.
Moreover, the generic use of the term "peripheral nerve hyperexcitability syndromes" to describe the aforementioned conditions is recommended and endorsed by several prominent researchers and practitioners in the field.
Benign fasciculation syndrome is a diagnosis of exclusion; that is, other potential causes for the twitching (mostly forms of neuropathy or motor neuron diseases such as ALS) must be ruled out before BFS can be assumed. An important diagnostic tool here is electromyography (EMG). Since BFS appears to cause no actual nerve damage (at least as seen on the EMG), patients will likely exhibit a completely normal EMG (or one where the only abnormality seen is fasciculations).
Another important step in diagnosing BFS is checking the patient for clinical weakness. Clinical weakness is often determined through a series of strength tests, such as observing the patient's ability to walk on his or her heels and toes. Resistance strength tests may include raising each leg, pushing forward and backward with the foot and/or toes, squeezing with fingers, spreading fingers apart, and pushing with or extending arms and/or hands. In each such test the test provider will apply resisting force and monitor for significant differences in strength abilities of opposing limbs or digits. If such differences are noted or the patient is unable to apply any resisting force, clinical weakness may be noted.
Lack of clinical weakness along with normal EMG results (or those with only fasciculations) largely eliminates more serious disorders from potential diagnosis.
Especially for younger persons who have only LMN sign fasciculations, "In the absence of weakness or abnormalities of thyroid function or electrolytes, individuals under 40 years can be reassured without resorting to electromyography (EMG) to avoid the small but highly damaging possibility of false-positives". "Equally, however, most subspecialists will recall a small number of cases, typically men in their 50s or 60s, in whom the latency from presentation with apparently benign fasciculations to weakness (and then clear MND) was several years. Our impression is that a clue may be that the fasciculations of MND are often abrupt and widespread at onset in an individual previously unaffected by fasciculations in youth. The site of the fasciculations, for example, those in the calves versus abdomen, has not been shown to be discriminatory for a benign disorder. There is conflicting evidence as to whether the character of fasciculations differs neurophysiologically in MND".
Another abnormality commonly found upon clinical examination is a brisk reflex action known as "hyperreflexia". Standard laboratory tests are unremarkable. According to neurologist John C. Kincaid:
Like ALS, diagnosing PLS is a diagnosis of exclusion, as there is no one test that can confirm a diagnosis of PLS. The Pringle Criteria, proposed by Pringle et al, provides a guideline of nine points that, if confirmed, can suggest a diagnosis of PLS. Due to the fact that a person with ALS may initially present with only upper motor neuron symptoms, indicative of PLS, one key aspect of the Pringle Criteria is requiring a minimum of three years between symptom onset and symptom diagnosis. When these criteria are met, a diagnosis of PLS is highly likely. Other aspects of Pringle Criteria include normal EMG findings, thereby ruling out lower motor neuron involvement that is indicative of ALS, and absence of family history for Hereditary Spastic Paraplegia (HSP) and ALS. Imaging studies to rule out structural or demyelinating lesions may be done as well. Hoffman's sign and Babinski reflex may be present and indicative of upper motor neuron damage.
People with MMND become progressively more weak with time. Generally, affected individuals survive up to 30 years after they are diagnosed.
The diagnosis for DMSA1 is usually masked by a diagnosis for a respiratory disorder. In infants, DMSAI is usually the cause of acute respiratory insufficiency in the first 6 months of life. The respiratory distress should be confirmed as diaphragmatic palsy by fluoroscopy or by electromyography. Although the patient may have a variety of other symptoms the diaphragmatic palsy confirmed by fluoroscopy or other means is the main criteria for diagnosis. This is usually confirmed with genetic testing looking for mutations in the "IGHMBP2" gene.
The patient can be misdiagnosed if the respiratory distress is mistaken for a severe respiratory infection or DMSA1 can be mistaken for SMA1 because their symptoms are so similar but the genes which are affected are different. This is why genetic testing is necessary to confirm the diagnosis of DMSA.
The most useful information for accurate diagnosis is the symptoms and weakness pattern. If the quadriceps are spared but the hamstrings and iliopsoas are severely affected in a person between ages of 20 - 40, it is very likely HIBM will be at the top of the differential diagnosis. The doctor may order any or all of the following tests to ascertain if a person has IBM2:
- Blood test for serum Creatine Kinase (CK or CPK);
- Nerve Conduction Study (NCS) / Electomyography (EMG);
- Muscle Biopsy;
- Magnetic Resonance Imaging (MRI) or Computer Tomography (CT) Scan to determine true sparing of quadriceps;
- Blood Test or Buccal swab for genetic testing;
In terms of treatment for neuromuscular diseases (NMD), "exercise" might be a way of managing them, as NMD individuals would gain muscle strength. In a study aimed at results of exercise, in muscular dystrophy and Charcot-Marie-Tooth disease, the later benefited while the former did not show benefit; therefore, it depends on the disease Other management routes for NMD should be based on medicinal and surgical procedures, again depending on the underlying cause.
The importance of correctly recognizing progressive muscular atrophy as opposed to ALS is important for several reasons.
- 1) the prognosis is a little better. A recent study found the 5-year survival rate in PMA to be 33% (vs 20% in ALS) and the 10-year survival rate to be 12% (vs 6% in ALS).
- 2) Patients with PMA do not suffer from the cognitive change identified in certain groups of patients with MND.
- 3) Because PMA patients do not have UMN signs, they usually do not meet the "World Federation of Neurology El Escorial Research Criteria" for “Definite” or “Probable” ALS and so are ineligible to participate in the majority of clinical research trials such as drugs trials or brain scans.
- 4) Because of its rarity (even compared to ALS) and confusion about the condition, some insurance policies or local healthcare policies may not recognize PMA as being the life-changing illness that it is. In cases where being classified as being PMA rather than ALS is likely to restrict access to services, it may be preferable to be diagnosed as "slowly progressive ALS" or "lower motor neuron predominant" ALS.
An initial diagnosis of PMA could turn out to be slowly progressive ALS many years later, sometimes even decades after the initial diagnosis. The occurrence of upper motor neurone symptoms such as brisk reflexes, spasticity, or a Babinski sign would indicate a progression to ALS; the correct diagnosis is also occasionally made on autopsy.
PNE can be caused by pregnancy, scarring due to surgery, accidents and surgical mishaps. Anatomic abnormalities can result in PNE due to the pudendal nerve being fused to different parts of the anatomy, or trapped between the sacrotuberous and sacrospinalis ligaments. Heavy and prolonged bicycling, especially if an inappropriately shaped or incorrectly positioned bicycle seat is used, may eventually thicken the sacrotuberous and/or sacrospinous ligaments and trap the nerve between them, resulting in PNE.
PBP is aggressive and relentless, and there were no treatments for the disease as of 2005. However, early detection of PBP is the optimal scenario in which doctors can map out a plan for management of the disease. This typically involves symptomatic treatments that are frequently used in many lower motor disorders.
Similar to a tinel sign digital palpitation of the ischial spine may produce pain. In contrast, patients may report temporary relief with a diagnostic pudendal nerve block (see Injections), typically infiltrated near the ischial spine.
Electromyography can be used to measure motor latency along the pudendal nerve. A greater than normal conduction delay can indicate entrapment of the nerve.
Imaging studies using MR neurography may be useful. In patients with unilateral pudendal entrapment in the Alcock's canal, it is typical to see asymmetric swelling and hyperintensity affecting the pudendal neurovascular bundle.
Diagnosis requires a neurological examination and neuroimaging can be helpful.
BVVL can be differentially diagnosed from similar conditions like Fazio-Londe syndrome and amyotrophic lateral sclerosis, in that those two conditions don't involve sensorineural hearing loss, while BVVL, Madras motor neuron disease, Nathalie syndrome, and Boltshauser syndrome do. Nathalie syndrome does not involve lower cranial nerve symptoms, so it can be excluded if those are present. If there is evidence of lower motor neuron involvement, Boltshauser syndrome can be excluded. Finally, if there is a family history of the condition, then BVVL is more likely than MMND, as MMND tends to be sporadic.
Genetic testing is able to identify genetic mutations underying BVVL.
Diagnosis can be made solely on the basis of history and physical examination in people who present with only facial asymmetry. For those who report neurological symptoms such as migraine or seizures, MRI scan of the brain is the imaging modality of choice. A diagnostic lumbar puncture and serum test for autoantibodies may also be indicated in people who present with a seizure disorder of recent onset.
Multifocal motor neuropathy is normally treated by receiving intravenous immunoglobulin (IVIG), which can in many cases be highly effective, or immunosuppressive therapy with cyclophosphamide or rituximab. Steroid treatment (prednisone) and plasmapheresis are no longer considered to be useful treatments; prednisone can exacerbate symptoms. IVIg is the primary treatment, with about 80% of patients responding, usually requiring regular infusions at intervals of 1 week to several months. Other treatments are considered in case of lack of response to IVIg, or sometimes because of the high cost of immunoglobulin. Subcutaneous immunoglobulin is under study as a less invasive, more-convenient alternative to IV delivery.
PMA is a diagnosis of exclusion, there is no specific test which can conclusively establish whether a patient has the condition. Instead, a number of other possibilities have to be ruled out, such as multifocal motor neuropathy or spinal muscular atrophy. Tests used in the diagnostic process include MRI, clinical examination, and EMG. EMG tests in patients who do have PMA usually show denervation (neurone death) in most affected body parts, and in some unaffected parts too.
It typically takes longer to be diagnosed with PMA than ALS, an average of 20 months for PMA vs 15 months in ALS/MND.
Patients can often live with PLS for many years and very often outlive their neurological disease and succumb to some unrelated condition. There is currently no effective cure, and the progression of symptoms varies. Some people may retain the ability to walk without assistance, but others eventually require wheelchairs, canes, or other assistive devices.
DSMA1 is usually fatal in early childhood. The patient, normally a child, suffers a progressive degradation of the respiratory system until respiratory failure. There is no consensus on the life expectancy in DSMA1 despite a number of studies being conducted. A small number of patients survive past two years of age but they lack signs of diaphragmatic paralysis or their breathing is dependent on a ventilation system.
Some degree of control of the fasciculations may be achieved with the same medication used to treat essential tremor (beta-blockers and anti-seizure drugs). However, often the most effective approach to treatment is to treat any accompanying anxiety. No drugs, supplements, or other treatments have been found that completely control the symptoms. In cases where fasciculations are caused by magnesium deficiency, supplementing magnesium can be effective in reducing symptoms.
In many cases, the severity of BFS symptoms can be significantly reduced through a proactive approach to decrease the overall daily stress. Common ways to reduce stress include: exercising more, sleeping more, working less, meditation, and eliminating all forms of dietary caffeine (e.g. coffee, chocolate, cola, and certain over-the counter medications).
If pain or muscle aches are present alongside fasciculations, patients may be advised to take over-the-counter pain medications such as ibuprofen or acetaminophen during times of increased pain. Other forms of pain management may also be employed. Prior to taking any over-the-counter medications, individuals should initiate discussions with their health care provider(s) to avoid adverse effects associated with long-term usage or preexisting conditions.