Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is not practical to test or decontaminate most sites that may be contaminated with "H. capsulatum", but the following sources list environments where histoplasmosis is common, and precautions to reduce a person's risk of exposure, in the three parts of the world where the disease is prevalent. Precautions common to all geographical locations would be to avoid accumulations of bird or bat droppings.
The US National Institute for Occupational Safety and Health (NIOSH) provides information on work practices and personal protective equipment that may reduce the risk of infection. This document is available in English and Spanish.
Authors at the University of Nigeria have published a review which includes information on locations in which histoplasmosis has been found in Africa (in chicken runs, bats and the caves bats infest, and in soil), and a thorough reference list including English, French, and Spanish language references.
Clinically, there is a wide spectrum of disease manifestation, making diagnosis somewhat difficult. More severe forms include: (1) the chronic pulmonary form, often occurring in the presence of underlying pulmonary disease; and (2) a disseminated form, which is characterized by the progressive spread of infection to extra-pulmonary sites. Oral manifestations have been reported as the main complaint of the disseminated forms, leading the patient to seek treatment, whereas pulmonary symptoms in disseminated disease may be mild or even misinterpreted as flu. Histoplasmosis can be diagnosed by samples containing the fungus taken from sputum (via bronchoalveolar lavage), blood, or infected organs. It can also be diagnosed by detection of antigens in blood or urine samples by ELISA or PCR. Antigens can cross-react with antigens of African histoplasmosis (caused by Histoplasma duboisii), blastomycosis, coccidioidomycosis, paracoccidioidomycosis, and Penicillium marneffei infection. Histoplasmosis can also be diagnosed by a test for antibodies against "Histoplasma" in the blood. "Histoplasma" skin tests indicate whether a person has been exposed, but do not indicate whether they have the disease. Formal histoplasmosis diagnoses are often confirmed only by culturing the fungus directly. Sabouraud agar is one type of agar growth media on which the fungus can be cultured. Cutaneous manifestations of disseminated disease are diverse and often present as a nondescript rash with systemic complaints. Diagnosis is best established by urine antigen testing, as blood cultures may take up to 6 weeks for diagnostic growth to occur and serum antigen testing often comes back with a false negative before 4 weeks of disseminated infection.
Once suspected, the diagnosis of blastomycosis can usually be confirmed by demonstration of the characteristic broad based budding organisms in sputum or tissues by KOH prep, cytology, or histology. Tissue biopsy of skin or other organs may be required in order to diagnose extra-pulmonary disease. Blastomycosis is histologically associated with granulomatous nodules. Commercially available urine antigen testing appears to be quite sensitive in suggesting the diagnosis in cases where the organism is not readily detected. While culture of the organism remains the definitive diagnostic standard, its slow growing nature can lead to delays in treatment of up to several weeks. However, sometimes blood and sputum cultures may not detect blastomycosis.
If suspected, fungal meningitis is diagnosed by testing blood and CSF samples for pathogens. Identifying the specific pathogen is necessary to determine the proper course of treatment and the prognosis. Measurement of opening pressure, cell count with differential, glucose and protein concentrations, Gram's stain, India ink, and culture tests should be preformed on CSF samples when fungal meningitis is suspected.
Diagnosis is often made by visualization of yeast cells in tissue, or superficial scrapings. Radiography of the chest reveals interstitial infiltrates in the majority of cases.
Mortality rate in treated cases
- 0-2% in treated cases among immunocompetent patients
- 29% in immunocompromised patients
- 40% in the subgroup of patients with AIDS
- 68% in patients presenting as acute respiratory distress syndrome (ARDS)
Prognosis depends on the pathogen responsible for the infection and risk group. Overall mortality for "Candida" meningitis is 10-20%, 31% for patients with HIV, and 11% in neurosurgical cases (when treated). Prognosis for "Aspergillus" and coccidioidal infections is poor.
Sulfonamides are the traditional remedies to paracoccidiodomycosis. They were introduced by Oliveira Ribeiro and used for more than 50 years with good results. The most-used sulfa drugs in this infection are sulfadimethoxime, sulfadiazine, and co-trimoxazole. This treatment is generally safe, but several adverse effects can appear, the most severe of which are the Stevens-Johnson syndrome and agranulocytosis. Similarly to tuberculosis treatment, it must be continued for up to three years to eradicate the fungus, and relapse and treatment failures are not unusual.
Antifungal drugs such as amphotericin B or itraconazole and ketoconazole are more effective in clearing the infection, but are limited by their cost when compared with sulfonamides.During therapy, fibrosis can appear and surgery may be needed to correct this. Another possible complication is Addisonian crisis. The mortality rate in children is around 7-10%.
Progressive disseminated histoplasmosis is an infection caused by Histoplasma capsulatum, and most people who develop this severe form of histoplasmosis are immunocompromised or taking systemic corticosteroids. Skin lesions are present in approximately 6% of patients with dissemination.
African histoplasmosis is an infection caused by "Histoplasma duboisii". Disease has been most often reported in Uganda, Nigeria, Zaire and Senegal. In human disease it manifests differently than histoplasmosis (caused by "Histoplasma capsulatum"), most often involving the skin and bones and rarely involving the lungs.
American tick bite fever (also known as ""Rickettsia parkeri" infection") is a condition that may be characterized by a rash of maculopapules.
Aspiration pneumonia is typically caused by aspiration of bacteria from the oral cavity into the lungs, and does not result in the formation of granulomas. However, granulomas may form when food particles or other particulate substances like pill fragments are aspirated into the lungs. Patients typically aspirate food because they have esophageal, gastric or neurologic problems. Intake of drugs that depress neurologic function may also lead to aspiration. The resultant granulomas are typically found around the airways (bronchioles) and are often accompanied by foreign-body-type multinucleated giant cells, acute inflammation or organizing pneumonia. The finding of food particles in lung biopsies is diagnostic.
Vietnamese tuberculosis refers to certain forms of chronic melioidosis that look clinically very similar to tuberculosis. It is derived from the clinical appearance of the disease in American soldiers returning from the Vietnam War.
Lab testing is necessary for definitive diagnosis, but a good field test is to touch a dead larva with a toothpick or twig. It will be sticky and "ropey" (drawn out). Foulbrood also has a characteristic odor, and experienced beekeepers with a good sense of smell can often detect the disease upon opening a hive. However, this odour may not be noticeable until the disease is in an advanced stage. Since response and treatment is required as early as possible to protect other colonies, absence of odour cannot be relied on as indicating absence of foulbrood. Only regular and thorough inspection of the brood can identify the disease in its early stages.
The most reliable disease diagnosis is done by sending in some possibly affected brood comb to a laboratory specialized in identifying honey bee diseases.
Pneumocystis infection in the lungs is usually not associated with granulomas, but rare cases are well documented to cause granulomatous inflammation. The diagnosis is established by finding Pneumocystis yeasts within the granulomas on lung biopsies.
Mediastinal fibrosis most common cause is idiopathic mediastinal fibrosis; less commonly histoplasmosis tuberculosis or unknown. It is characterized by invasive, calcified fibrosis centered on lymph nodes that block major vessels and airways. In Europe, this disease is exceptionally rare. More cases are seen
in USA where the disease may often be associated with histoplasmosis.
This disease is diagnosed mainly by the appearance of well-demarcated rash and inflammation. Blood cultures are unreliable for diagnosis of the disease, but may be used to test for sepsis. Erysipelas must be differentiated from herpes zoster, angioedema, contact dermatitis, and diffuse inflammatory carcinoma of the breast.
Erysipelas can be distinguished from cellulitis by its raised advancing edges and sharp borders. Elevation of the antistreptolysin O titer occurs after around 10 days of illness.
Fluorescein angiography is usually performed for diagnosis and follow-up of patients with POHS.
One of the biggest risks factors faced by the affected foals is susceptibility to secondary infection. Within three to eight days after birth, the foal may die from infection or is euthanized for welfare reasons.
Other possible causes (eg differential diagnosis) of large folds within the stomach include: Zollinger-Ellison syndrome, cancer, infection (cytomegalovirus/CMV, histoplasmosis, syphilis), and infiltrative disorders such as sarcoidosis.
The large folds of the stomach, as seen in Ménétrier disease, are easily detected by x-ray imaging following a barium meal or by endoscopic methods. Endoscopy with deep mucosal biopsy (and cytology) is required to establish the diagnosis and exclude other entities that may present similarly. A non-diagnostic biopsy may lead to a surgically obtained full-thickness biopsy to exclude malignancy. CMV and helicobacter pylori serology should be a part of the evaluation.
Twenty-four-hour pH monitoring reveals hypochlorhydria or achlorhydria, and a chromium-labelled albumin test reveals increased GI protein loss. Serum gastrin levels will be within normal limits.
MVD is clinically indistinguishable from Ebola virus disease (EVD), and it can also easily be confused with many other diseases prevalent in Equatorial Africa, such as other viral hemorrhagic fevers, falciparum malaria, typhoid fever, shigellosis, rickettsial diseases such as typhus, cholera, gram-negative septicemia, borreliosis such as relapsing fever or EHEC enteritis. Other infectious diseases that ought to be included in the differential diagnosis include leptospirosis, scrub typhus, plague, Q fever, candidiasis, histoplasmosis, trypanosomiasis, visceral leishmaniasis, hemorrhagic smallpox, measles, and fulminant viral hepatitis. Non-infectious diseases that can be confused with MVD are acute promyelocytic leukemia, hemolytic uremic syndrome, snake envenomation, clotting factor deficiencies/platelet disorders, thrombotic thrombocytopenic purpura, hereditary hemorrhagic telangiectasia, Kawasaki disease, and even warfarin intoxication. The most important indicator that may lead to the suspicion of MVD at clinical examination is the medical history of the patient, in particular the travel and occupational history (which countries and caves were visited?) and the patient's exposure to wildlife (exposure to bats or bat excrements?). MVD can be confirmed by isolation of marburgviruses from or by detection of marburgvirus antigen or genomic or subgenomic RNAs in patient blood or serum samples during the acute phase of MVD. Marburgvirus isolation is usually performed by inoculation of grivet kidney epithelial Vero E6 or MA-104 cell cultures or by inoculation of human adrenal carcinoma SW-13 cells, all of which react to infection with characteristic cytopathic effects. Filovirions can easily be visualized and identified in cell culture by electron microscopy due to their unique filamentous shapes, but electron microscopy cannot differentiate the various filoviruses alone despite some overall length differences. Immunofluorescence assays are used to confirm marburgvirus presence in cell cultures. During an outbreak, virus isolation and electron microscopy are most often not feasible options. The most common diagnostic methods are therefore RT-PCR in conjunction with antigen-capture ELISA, which can be performed in field or mobile hospitals and laboratories. Indirect immunofluorescence assays (IFAs) are not used for diagnosis of MVD in the field anymore.
Marburgviruses are World Health Organization Risk Group 4 Pathogens, requiring Biosafety Level 4-equivalent containment, laboratory researchers have to be properly trained in BSL-4 practices and wear proper personal protective equipment.
This syndrome is characterized by an increased susceptibility to disseminated nontuberculous mycobacterial infections, viral infections, especially with human papillomaviruses, and fungal infections, primarily histoplasmosis, and molds. There is profound monocytopenia, B lymphocytopenia and NK lymphocytopenia. Patients have an increased chance of developing malignancies, including: myelodysplasia/leukemia vulvar carcinoma, metastatic melanoma, cervical carcinoma, Bowen disease of the vulva, and multiple Epstein-Barr virus(+) leiomyosarcoma. Patients may also develop pulmonary alveolar proteinosis without mutations in the granulocyte-macrophage colony-stimulating factor receptor or anti-granulocyte-macrophage colony-stimulating factor autoantibodies. Last, patients may develop autoimmune phenomena, including lupus like syndromes, primary biliary cirrhosis or aggressive multiple sclerosis.
Of the 26, now 28, patients probably afflicted by this syndrome, 48% died of causes ranging from cancer to myelodysplasia with a mean age at death of 34.7 years and median age of 36.5 years.
Depending on the severity, treatment involves either oral or intravenous antibiotics, using penicillins, clindamycin, or erythromycin. While illness symptoms resolve in a day or two, the skin may take weeks to return to normal.
Because of the risk of reinfection, prophylactic antibiotics are sometimes used after resolution of the initial condition. However, this approach does not always stop reinfection.
Biopsies of the skin may be performed to identify the cleavage that takes place at the dermal-epidermal junction. Another test that can aid in a diagnosis of JEB is the positive Nikolsky’s sign. By applying pressure to the skin, transverse movements can indicate slipping between the dermal and epidermal layers. An easier and more definitive test is through polymerase chain reaction (PCR). This method allows mane and tail samples to be genetically tested for the mutated genes that cause the condition. Hair samples must be pulled, not cut, with roots attached. The test can detect both JEB1 and JEB2. Testing costs around $35.00 US per sample.