Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
For most cases the diagnosis for congenital amputation is not made until the infant is born. One procedure that is helpful in determining this condition in an infant is an ultrasound examination of a fetus when still in the mother's abdomen as it can reveal the absence of a limb. However, since ultrasounds are routine they may not pick up all the signs of some of the more subtle birth defects.
The most popular method of treatment for congenital amputation is having the child be fit for a prosthesis which can lead to normal development, so the muscles don't atrophy. If there is congenital amputation of the fingers, plastic surgery can be performed by using the big toe or second toes in place of the missing fingers of the hand.
In rare cases of amniotic banding syndrome, if diagnosed "in utero", fetal surgery may be considered to save a limb which is in danger of amputation.
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
Carrier testing for Roberts syndrome requires prior identification of the disease-causing mutation in the family. Carriers for the disorder are heterozygotes due to the autosomal recessive nature of the disease. Carriers are also not at risk for contracting Roberts syndrome themselves. A prenatal diagnosis of Roberts syndrome requires an ultrasound examination paired with cytogenetic testing or prior identification of the disease-causing ESCO2 mutations in the family.
Cytogenetic preparations that have been stained by either Giemsa or C-banding techniques will show two characteristic chromosomal abnormalities. The first chromosomal abnormality is called premature centromere separation (PCS) and is the most likely pathogenic mechanism for Roberts syndrome. Chromosomes that have PCS will have their centromeres separate during metaphase rather than anaphase (one phase earlier than normal chromosomes). The second chromosomal abnormality is called heterochromatin repulsion (HR). Chromosomes that have HR experience separation of the heterochromatic regions during metaphase. Chromosomes with these two abnormalities will display a "railroad track" appearance because of the absence of primary constriction and repulsion at the heterochromatic regions. The heterochromatic regions are the areas near the centromeres and nucleolar organizers. Carrier status cannot be determined by cytogenetic testing. Other common findings of cytogenetic testing on Roberts syndrome patients are listed below.
- Aneuploidy- the occurrence of one or more extra or missing chromosomes
- Micronucleation- nucleus is smaller than normal
- Multilobulated Nuclei- the nucleus has more than one lobe
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
Although significant progress has been made in identifying the etiology of some birth defects, approximately 65% have no known or identifiable cause. These are referred to as sporadic, a term that implies an unknown cause, random occurrence regardless of maternal living conditions, and a low recurrence risk for future children. For 20-25% of anomalies there seems to be a "multifactorial" cause, meaning a complex interaction of multiple minor genetic anomalies with environmental risk factors. Another 10–13% of anomalies have a purely environmental cause (e.g. infections, illness, or drug abuse in the mother). Only 12–25% of anomalies have a purely genetic cause. Of these, the majority are chromosomal anomalies.
The diagnosis of tetra-amelia syndrome is established clinically and can be made on routine prenatal ultrasonography. WNT3 is the only gene known to be associated with tetra-amelia syndrome. Molecular genetic testing on a clinical basis can be used to diagnose the incidence of the syndrome. The mutation detection frequency is unknown as only a limited number of families have been studied. Affected infants are often stillborn or die shortly after birth.
The complete absence of an arm or leg in amelia occurs as a result of the limb formation process being either prevented or interrupted very early in the developing embryo: between 24 and 36 days following fertilization. Tetra-amelia syndrome appears to have an autosomal recessive pattern of inheritance - that is, the parents of an individual with tetra-amelia syndrome each carry one copy of the mutated gene, but do not show signs and symptoms of the condition. In a few cases, amelia may be attributed to health complications during the early stages of pregnancy, including infection, failed abortion or complications associated with removal of an IUD after pregnancy, or use of teratogenic drugs, such as thalidomide.
Tetra-amelia syndrome has been reported in only a few families worldwide.
According to a 2011 study by Bermejo-Sanchez, amelia – that is, the lacking of one or more limbs – occurs in roughly 1 out of every 71,000 pregnancies.
Ectromelia is a congenital condition where long bones are missing or underdeveloped.
Examples include:
- Amelia
- Hemimelia
- Phocomelia
- Sirenomelia
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Tetra-amelia syndrome ("" + "amelia"), also called autosomal recessive tetraamelia, is an extremely rare autosomal recessive congenital disorder characterized by the absence of all four limbs. Other areas of the body are also affected by malformations, such as the face, skull, reproductive organs, anus and pelvis. The disorder is caused by mutations in the WNT3 gene.
Dysmelia can refer to
- missing (aplasia) limbs: amelia, oligodactyly, congenital amputation e.g. Tibial or Radial aplasia
- malformation of limbs: shortening (micromelia, rhizomelia or mesomelia), ectrodactyly, phocomelia, meromelia, syndactyly, brachydactyly, club foot
- too many limbs: polymelia, polydactyly, polysyndactyly
- others: Tetraamelia, hemimelia, Symbrachydactyly
Dysmelia can be caused by
- inheritance of abnormal genes, e.g. polydactyly, ectrodactyly or brachydactyly, symptoms of deformed limbs then often occur in combination with other symptoms (syndromes)
- external causes during pregnancy (thus not inherited), e.g. via amniotic band syndrome
- teratogenic drugs (e.g. thalidomide, which causes phocomelia) or environmental chemicals
- ionizing radiation (nuclear weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
Subtypes of the syndrome are traceable to different genetic variations and presentations:
Type III is also known as Klein-Waardenburg syndrome, and type IV is also known as Waardenburg-Shah syndrome.
Yim–Ebbin syndrome is a congenital disorder characterized by the absence of arms, a cleft lip and palate, hydrocephalus, and an iris coloboma. It was first described by Yim and Ebbin in 1982, and later by Thomas and Donnai in 1994. In 1996, a third case was reported by Froster et al. who suggested that the three cases were related and represented a distinct syndrome. In 2000, a similar case was reported by Pierri et al.
It is also known as "amelia cleft lip palate hydrocephalus iris coloboma".
When a baby is born bottom first there is more risk that the birth will not be straight forward and that the baby could be harmed. For example, when the baby's head passes through the mother’s pelvis the umbilical cord can be compressed which prevents delivery of oxygenated blood to the baby. Due to this and other risks, babies in breech position are usually born by a planned caesarean section in developed countries.
Caesarean section reduces the risk of harm or death for the baby but does increase risk of harm to the mother compared with a vaginal delivery. It is best if the baby is in a head down position so that they can be born vaginally with less risk of harm to both mother and baby. The next section is looking at External cephalic version or ECV which is a method that can help the baby turn from a breech position to a head down position.
Vaginal birth of a breech baby has its risks but caesarean sections are not always available or possible, a mother might arrive in hospital at a late stage of her labour or may choose not to have a caesarean section. In these cases, it is important that the clinical skills needed to deliver breech babies are not lost so that mothers and babies are as safe as possible. Compared with developed countries, planned caesarean sections have not produced as good results in developing countries - it is suggested that this is due to more breech vaginal deliveries being performed by experienced, skilled practitioners in these settings.
In twin pregnancies, it is very common for one or both babies to be in the breech position. Most often twin babies do not have the chance to turn around because they are born prematurely. If both babies are in the breech position and the mother has gone into labour early, a cesarean section may be the best option. About 30-40% of twin pregnancies result in only one baby being in the breech position. If this is the case, the babies can be born vaginally. After the first baby who is not in the breech position is delivered, the baby who is presented in the breech position may turn itself around, if this does not happen another procedure may performed called the breech extraction. The breech extraction is the procedure that involves the obstetrician grabbing the second twin's feet and pulling him/her into the birth canal. This will help with delivering the second twin vaginally. However, if the second twin is larger than the first, complications with delivering the second twin vaginally may arise and a cesarean section should be performed. At times, the first twin (the twin closest to the birth canal) can be in the breech position with the second twin being in the cephalic position (vertical). When this occurs, risks of complications are higher than normal. In particular, a serious complication known as Locked twins. This is when both babies interlock their chins during labour. When this happens a cesarean section should be performed immediately.
This disease is diagnosed mainly by the appearance of well-demarcated rash and inflammation. Blood cultures are unreliable for diagnosis of the disease, but may be used to test for sepsis. Erysipelas must be differentiated from herpes zoster, angioedema, contact dermatitis, and diffuse inflammatory carcinoma of the breast.
Erysipelas can be distinguished from cellulitis by its raised advancing edges and sharp borders. Elevation of the antistreptolysin O titer occurs after around 10 days of illness.
Depending on the severity, treatment involves either oral or intravenous antibiotics, using penicillins, clindamycin, or erythromycin. While illness symptoms resolve in a day or two, the skin may take weeks to return to normal.
Because of the risk of reinfection, prophylactic antibiotics are sometimes used after resolution of the initial condition. However, this approach does not always stop reinfection.