Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
With colonoscopy it is possible to detect small ulcers of between 3–5mm, but diagnosis may be difficult as the mucous membrane between these areas can look either healthy or inflamed.
Asymptomatic human infections are usually diagnosed by finding cysts shed in the stool. Various flotation or sedimentation procedures have been developed to recover the cysts from fecal matter and stains help to visualize the isolated cysts for microscopic examination. Since cysts are not shed constantly, a minimum of three stools are examined. In symptomatic infections, the motile form (the trophozoite) is often seen in fresh feces. Serological tests exist, and most infected individuals (with symptoms or not) test positive for the presence of antibodies. The levels of antibody are much higher in individuals with liver abscesses. Serology only becomes positive about two weeks after infection. More recent developments include a kit that detects the presence of amoeba proteins in the feces, and another that detects ameba DNA in feces. These tests are not in widespread use due to their expense.
Microscopy is still by far the most widespread method of diagnosis around the world. However it is not as sensitive or accurate in diagnosis as the other tests available. It is important to distinguish the "E. histolytica" cyst from the cysts of nonpathogenic intestinal protozoa such as "Entamoeba coli" by its appearance. "E. histolytica" cysts have a maximum of four nuclei, while the commensal "Entamoeba coli" cyst has up to 8 nuclei. Additionally, in "E. histolytica," the endosome is centrally located in the nucleus, while it is usually off-center in "Entamoeba coli." Finally, chromatoidal bodies in "E. histolytica" cysts are rounded, while they are jagged in "Entamoeba coli". However, other species, "Entamoeba dispar" and "E. moshkovskii", are also commensals and cannot be distinguished from "E. histolytica" under the microscope. As "E. dispar" is much more common than "E. histolytica" in most parts of the world this means that there is a lot of incorrect diagnosis of "E. histolytica" infection taking place. The WHO recommends that infections diagnosed by microscopy alone should not be treated if they are asymptomatic and there is no other reason to suspect that the infection is actually "E. histolytica". Detection of cysts or trophozoites stools under microscope may require examination of several samples over several days to determine if they are present, because cysts are shed intermittently and may not show up in every sample.
Typically, the organism can no longer be found in the feces once the disease goes extra-intestinal. Serological tests are useful in detecting infection by "E. histolytica" if the organism goes extra-intestinal and in excluding the organism from the diagnosis of other disorders. An Ova & Parasite (O&P) test or an "E. histolytica" fecal antigen assay is the proper assay for intestinal infections. Since antibodies may persist for years after clinical cure, a positive serological result may not necessarily indicate an active infection. A negative serological result however can be equally important in excluding suspected tissue invasion by "E. histolytica".
Cultures of stool samples are examined to identify the organism causing dysentery. Usually, several samples must be obtained due to the number of amoebae, which changes daily. Blood tests can be used to measure abnormalities in the levels of essential minerals and salts.
The mouth, skin, and lips may appear dry due to dehydration. Lower abdominal tenderness may also be present.
In the majority of cases, amoebas remain in the gastrointestinal tract of the hosts. Severe ulceration of the gastrointestinal mucosal surfaces occurs in less than 16% of cases. In fewer cases, the parasite invades the soft tissues, most commonly the liver. Only rarely are masses formed (amoebomas) that lead to intestinal obstruction.(Mistaken for Ca caecum and appendicular mass) Other local complications include bloody diarrhea, pericolic and pericaecal abscess.
Complications of hepatic amoebiasis includes subdiaphragmatic abscess, perforation of diaphragm to pericardium and pleural cavity, perforation to abdominal cavital "(amoebic peritonitis)" and perforation of skin "(amoebiasis cutis)".
Pulmonary amoebiasis can occur from hepatic lesion by haemotagenous spread and also by perforation of pleural cavity and lung. It can cause lung abscess, pulmono pleural fistula, empyema lung and broncho pleural fistula. It can also reach the brain through blood vessels and cause amoebic brain abscess and amoebic meningoencephalitis. Cutaneous amoebiasis can also occur in skin around sites of colostomy wound, perianal region, region overlying visceral lesion and at the site of drainage of liver abscess.
Urogenital tract amoebiasis derived from intestinal lesion can cause amoebic vulvovaginitis "(May's disease)", rectovesicle fistula and rectovaginal fistula.
"Entamoeba histolytica" infection is associated with malnutrition and stunting of growth.
Diagnosis may be simple in cases where the patient's signs and symptoms are idiopathic to a specific cause. However this is generally not the case, considering that many pathogens which cause enteritis may exhibit the similar symptoms, especially early in the disease. In particular, "campylobacter, shigella, salmonella" and many other bacteria induce acute self-limited colitis, an inflammation of the lining of the colon which appears similar under the microscope.
A medical history, physical examination and tests such as blood counts, stool cultures, CT scans, MRIs, PCRs, colonoscopies and upper endoscopies may be used in order to perform a differential diagnosis. A biopsy may be required to obtain a sample for histopathology.
The CDC recommends hand-washing and avoiding potentially contaminated food and untreated water.
Boiling suspect water for one minute is the surest method to make water safe to drink and kill disease-causing microorganisms such as "Giardia lamblia" if in doubt about whether water is infected. Chemical disinfectants or filters may be used.
According to a review of the literature from 2000, there is little evidence linking the drinking of water in the North American wilderness and Giardia. CDC surveillance data (for 2005 and 2006) reports one outbreak (6 cases) of waterborne giardiasis contracted from drinking wilderness river water in Colorado. However, less than 1% of reported giardiasis cases are associated with outbreaks.
Person-to-person transmission accounts for the majority of "Giardia" infections and is usually associated with poor hygiene and sanitation. "Giardia" is found on the surface of the ground, in the soil, in undercooked foods, and in water, and on hands without proper cleaning after handling infected feces. Water-borne transmission is associated with the ingestion of contaminated water. In the U.S., outbreaks typically occur in small water systems using inadequately treated surface water. Venereal transmission happens through fecal-oral contamination. Additionally, diaper changing and inadequate hand washing are risk factors for transmission from infected children. Lastly, food-borne epidemics of "Giardia" have developed through the contamination of food by infected food-handlers.
In cats, giardiasis responds to metronidazole, although this should not be administered to pregnant cats as it can cause developmental malformations. An alternative and effective drug is febendazole.
The diagnosis of bacterial overgrowth can be made by physicians in various ways. Malabsorption can be detected by a test called the "D-xylose" test. Xylose is a sugar that does not require enzymes to be digested. The D-xylose test involves having a patient drink a certain quantity of D-xylose, and measuring levels in the urine and blood; if there is no evidence of D-xylose in the urine and blood, it suggests that the small bowel is not absorbing properly (as opposed to problems with enzymes required for digestion).
The gold standard for detection of bacterial overgrowth is the aspiration of more than 10 bacteria per millilitre from the small bowel. The normal small bowel has less than 10 bacteria per millilitre. Some experts however, consider aspiration of more than 10 positive if the flora is predominately colonic type bacteria as these types of bacteria are considered pathological in excessive numbers in the small intestine. The reliability of aspiration in the diagnosis of SIBO has been questioned as SIBO can be patchy and the reproducibility can be as low as 38 percent. Breath tests have their own reliability problems with a high rate of false positive. Some doctors factor in a patients' response to treatment as part of the diagnosis.
Breath tests have been developed to test for bacterial overgrowth, based on bacterial metabolism of carbohydrates to hydrogen and/or methane, or based on the detection of by-products of digestion of carbohydrates that are not usually metabolized. The hydrogen breath test involves having the patient fast for a minimum of 12 hours then having them drink a substrate usually glucose or lactulose, then measuring expired hydrogen and methane concentrations typically over a period of 2–3 hours. It compares well to jejunal aspirates in making the diagnosis of bacterial overgrowth. C and C based tests have also been developed based on the bacterial metabolism of D-xylose. Increased bacterial concentrations are also involved in the deconjugation of bile acids. The glycocholic acid breath test involves the administration of the bile acid C glychocholic acid, and the detection of CO, which would be elevated in bacterial overgrowth.
Some patients with symptoms of bacterial overgrowth will undergo gastroscopy, or visualization of the stomach and duodenum with an endoscopic camera. Biopsies of the small bowel in bacterial overgrowth can mimic those of celiac disease, making the diagnosis more challenging. Findings include blunting of villi, hyperplasia of crypts and an increased number of lymphocytes in the lamina propria.
However, some physicians suggest that if the suspicion of bacterial overgrowth is high enough, the best diagnostic test is a trial of treatment. If the symptoms improve, an empiric diagnosis of bacterial overgrowth can be made.
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
A physical examination may reveal a mass or distention of the abdomen.
Tests which may be useful for diagnosis include:
- Abdominal x-ray
- Abdominal CT scan
- Contrast enema study
Microscopic demonstration of the large typically shaped oocysts is the basis for diagnosis. Because the oocysts may be passed in small amounts and intermittently, repeated stool examinations and concentration procedures are recommended. If stool examinations are negative, examination of duodenal specimens by biopsy or string test (Enterotest) may be needed. The oocysts can be visualized on wet mounts by microscopy with bright-field, differential interference contrast (DIC), and epifluorescence. They can also be stained by modified acid-fast stain.
Typical laboratory analyses include:
- Microscopy
- Morphologic comparison with other intestinal parasites
- Bench aids for "Isospora"
Preventive measures for visitors to tropical areas where the condition exists include steps to reduce the likelihood of gastroenteritis. These may comprise using only bottled water for drinking, brushing teeth, and washing food, and avoiding fruits washed with tap water (or consuming only peeled fruits, such as bananas and oranges). Basic sanitation is necessary to reduce fecal-oral contamination and the impact of environmental enteropathy in the developing world.
Due to the wide variety of intestinal parasites, a description of the symptoms rarely is sufficient for diagnosis. Instead, medical personnel use one of two common tests: they search stool samples for the parasites, or apply an adhesive the anus to search for eggs.
Major groups of parasites include protozoans (organisms having only one cell) and parasitic worms (helminths). Of these, protozoans, including cryptosporidium, microsporidia, and isospora, are most common in HIV-infected persons. Each of these parasites can infect the digestive tract, and sometimes two or more can cause infection at the same time.
The treatment of BLS follows two basic principles. When a patient presents with symptoms of BLS, the treating physician basically has two recognized options for management:
- Test-and-treat
- Treat empirically
Attempts must be made to determine whether there is a secondary cause amenable to treatment.
Primary (idiopathic) intestinal pseudo-obstruction is diagnosed based on motility studies, x-rays and gastric emptying studies.
The prognosis for tropical sprue may be excellent after treatment. It usually does not recur in people who get it during travel to affected regions. The recurrence rate for natives is about 20%, but another study showed changes can persist for several years.
Some studies reported up to 80% of patients with irritable bowel syndrome (IBS) have SIBO (using the hydrogen breath test). Subsequent studies demonstrated statistically significant reduction in IBS symptoms following therapy for SIBO.
There is a lack of consensus however, regarding the suggested link between IBS and SIBO. Other authors concluded that the abnormal breath results so common in IBS patients do not suggest SIBO, and state that "abnormal fermentation timing and dynamics of the breath test findings support a role for abnormal intestinal bacterial distribution in IBS." There is general consensus that breath tests are abnormal in IBS; however, the disagreement lies in whether this is representative of SIBO. More research is needed to clarifiy this possible link.
Avoiding food or water that may be contaminated with stool can help prevent the infection of "Cystoisospora" (Isosporiasis). Good hand-washing, and personal-hygiene practices should be used as well. One should wash their hands with soap and warm water after using the toilet, changing diapers, and before handling food (CDC.gov). It is also important to teach children the importance of washing their hands, and how to properly wash their hands.
Bile acid malabsorption is common in Crohn's disease but not always recognised. Most patients with previous ileal resection and chronic diarrhea will have abnormal SeHCAT tests and can benefit from bile acid sequestrants.
Patients with primary bile acid diarrhea are frequently misdiagnosed as having the irritable bowel syndrome as clinicians fail to recognize the condition. When SeHCAT testing is performed, the diagnosis of primary bile acid diarrhea is commonly made. In a review of 18 studies of the use of SeHCAT testing in diarrhea-predominant irritable bowel syndrome patients, 32% of 1223 patients had a SeHCAT 7-day retention of less than 10%, and 80% of these reported a response to cholestyramine, a bile acid sequestrant.
Estimates of the population prevalence taken from this review suggest that 1% of the adult population could have primary bile acid diarrhea (Type 2 bile acid malabsorption).
Specific helminths can be identified through microscopic examination of their eggs (ova) found in faecal samples. The number of eggs is measured in units of eggs per gram. However, it does not quantify mixed infections, and in practice, is inaccurate for quantifying the eggs of schistosomes and soil-transmitted helmiths. Sophisticated tests such as serological assays, antigen tests, and molecular diagnosis are also available; however, they are time-consuming, expensive and not always reliable.
This nitroimidazole compound, like metronidazole, has shown a marked therapeutic response in amoebic liver abscess. Occasional side effects include nausea and dizziness. Tinidazole is not widely available though it is more effective than metronidazole. Zuberi and Ibrahim found tinidazole to be effective in 86.7% cases of intestinal amoebiasis and in 100% cases of amoebic liver abscess.
Luminal amoebicides like halogenated oxyquinolines, e.g. diiodohydroxyquinoline in a dose of 0.6 G. thrice daily for 3 weeks, diloxanide furoate 0.5 G. three times a day for 10 days and sometimes tetracyclines 1–2 G./day for 5 days should be used concurrently with any of the above drugs as adjuncts to eliminate intestinal infection.
For the purpose of setting treatment standards and reuse legislation, it is important to be able to determine the amount of helminth eggs in an environmental sample with some accuracy. The detection of viable helminth eggs in samples of wastewater, sludge or fresh feces (as a diagnostic tool for the infection helminthiasis) is not straight forward. In fact, many laboratories in developing countries lack the right equipment or skilled staff required to do so. An important step in the analytical methods is usually the concentration of the eggs in the sample, especially in the case of wastewater samples. A concentration step may not be required in samples of dried feces, e.g. samples collected from urine-diverting dry toilets.
For medical purposes, the exact number of helminth eggs is less important and therefore most diagnoses are made simply by identifying the appearance of the worm or eggs in feces. Due to the large quantity of eggs laid, physicians can diagnose using only one or two fecal smears. The Kato technique (also called the Kato-Katz technique) is a laboratory method for preparing human stool samples prior to searching for parasite eggs. Eggs per gram is a laboratory test that determines the number of eggs per gram of feces in patients suspected of having a parasitological infection, such as schistosomiasis.
It is important to differentiate DPI from small intestinal obstruction, since obstruction may require surgical intervention, but this can at times be difficult. Horses suffering from DPI usually have a higher protein concentration in their peritoneal fluid compared to horses with small intestinal obstruction, often without a concurrent increase in nucleated cell count. They usually have some relief and decrease in pain after gastric decompression, while horses with an obstruction often still act colicky after nasogastric intubation. Distention of the small intestine may be less than what is felt on rectal examination of horses with obstruction, especially after gastric decompression. Horses with DPJ usually produce larger volumes of reflux (usually greater than 48 liters in the first 24 hours) than those with obstruction, and are often pyretic (temperatures of 101.5–102.5) and have alterations in white blood cell levels, while those with obstructions usually have a normal or lower than normal temperature and normal leukocyte levels.
Ultrasound can also be helpful to distinguish DPJ from obstruction. Horses with small intestinal obstruction will usually have an intestinal diameter of −10 cm with a wall thickness of 3–5mm. Horses with proximal enteritis usually have an intestinal diameter that is narrower, but wall thickness is often greater than 6mm, containing a hyperechoic or anechoic fluid, with normal, increased, or decreased peristalsis. However, obstructions that have been present for some time may present with thickened walls and distention of the intestine.
DPJ can only be definitively diagnosed during surgery or at necropsy, when its gross appearance of the small intestine may be evaluated.