Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Decompression sickness should be suspected if any of the symptoms associated with the condition occurs following a drop in pressure, in particular, within 24 hours of diving. In 1995, 95% of all cases reported to Divers Alert Network had shown symptoms within 24 hours. An alternative diagnosis should be suspected if severe symptoms begin more than six hours following decompression without an altitude exposure or if any symptom occurs more than 24 hours after surfacing. The diagnosis is confirmed if the symptoms are relieved by recompression. Although MRI or CT can frequently identify bubbles in DCS, they are not as good at determining the diagnosis as a proper history of the event and description of the symptoms.
Diagnosis can be assisted with a number of different scoring systems.
To prevent the excess formation of bubbles that can lead to decompression sickness, divers limit their ascent rate—the recommended ascent rate used by popular decompression models is about per minute—and carry out a decompression schedule as necessary. This schedule requires the diver to ascend to a particular depth, and remain at that depth until sufficient gas has been eliminated from the body to allow further ascent. Each of these is termed a "decompression stop", and a schedule for a given bottom time and depth may contain one or more stops, or none at all. Dives that contain no decompression stops are called "no-stop dives", but divers usually schedule a short "safety stop" at , , or , depending on the training agency.
The decompression schedule may be derived from decompression tables, decompression software, or from dive computers, and these are commonly based upon a mathematical model of the body's uptake and release of inert gas as pressure changes. These models, such as the Bühlmann decompression algorithm, are designed to fit empirical data and provide a decompression schedule for a given depth and dive duration.
Since divers on the surface after a dive still have excess inert gas in their bodies, any subsequent dive before this excess is fully eliminated needs to modify the schedule to take account of the residual gas load from the previous dive. This will result in a shorter available time under water or an increased decompression time during the subsequent dive. The total elimination of excess gas may take many hours, and tables will indicate the time at normal pressures that is required, which may be up to 18 hours.
Decompression time can be significantly shortened by breathing mixtures containing much less inert gas during the decompression phase of the dive (or pure oxygen at stops in of water or less). The reason is that the inert gas outgases at a rate proportional to the difference between the partial pressure of inert gas in the diver's body and its partial pressure in the breathing gas; whereas the likelihood of bubble formation depends on the difference between the inert gas partial pressure in the diver's body and the ambient pressure. Reduction in decompression requirements can also be gained by breathing a nitrox mix during the dive, since less nitrogen will be taken into the body than during the same dive done on air.
Following a decompression schedule does not completely protect against DCS. The algorithms used are designed to reduce the probability of DCS to a very low level, but do not reduce it to zero.
Ascending slowly is the best way to avoid altitude sickness. Avoiding strenuous activity such as skiing, hiking, etc. in the first 24 hours at high altitude reduces the symptoms of AMS. Alcohol and sleeping pills are respiratory depressants, and thus slow down the acclimatization process and should be avoided. Alcohol also tends to cause dehydration and exacerbates AMS. Thus, avoiding alcohol consumption in the first 24–48 hours at a higher altitude is optimal.
Treatment for the "Decompression Sickness" and the "Arterial Gas Embolism" components of DCI may differ significantly. Refer to the separate treatments under those articles.
First aid is common for both DCS and AGE:
- Monitor the patient for responsiveness, airway, breathing and circulation, resuscitate if necessary.
- Treat for shock.
- Lay the patient on their back, or for drowsy, unconscious, or nauseated victims, on their side.
- Administer 100% oxygen as soon as possible.
- Seek immediate medical assistance, locate a hospital with hyperbaric facilities and plan for possible transport.
- Allow the patient to drink water or isotonic fluids only if responsive, stable, and not suffering from nausea or stomach pain. Administration of intravenous saline solution is preferable.
- Record details of recent dives and responses to first aid treatment and provide to the treating medical specialist. The diving details should include depth and time profiles, breathing gases used and surface intervals.
Travelers who are susceptible to motion sickness can minimize symptoms by:
- Choosing a window seat with a view of the ground or of lower clouds, such that motion can be detected. This will not work if the plane is flown in the clouds for a long duration.
- Choosing seats with the smoothest ride in regards to pitch (the seats over the wings in an airplane). (This may not be sufficient for sensitive individuals who need to see ground movement)
- Sitting facing forward while focusing on distant objects rather than trying to read or look at something inside the airplane.
- Eating dry crackers, olives or suck on a lemon, to dry out the mouth, lessening nausea.
- Drinking a carbonated beverage.
Recompression treatment in a hyperbaric chamber was initially used as a life-saving tool to treat decompression sickness in caisson workers and divers who stayed too long at depth and developed decompression sickness. Now, it is a highly specialized treatment modality that has been found to be effective in the treatment of many conditions where the administration of oxygen under pressure has been found to be beneficial. Studies have shown it to be quite effective in some 13 indications approved by the Undersea and Hyperbaric Medical Society.
Hyperbaric oxygen treatment is generally preferred when effective, as it is usually a more efficient and lower risk method of reducing symptoms of decompression illness, However, in some cases recompression to pressures where oxygen toxicity is unacceptable may be required to eliminate the bubbles in the tissues that cause the symptoms.
The most straightforward way to avoid nitrogen narcosis is for a diver to limit the depth of dives. Since narcosis becomes more severe as depth increases, a diver keeping to shallower depths can avoid serious narcosis. Most recreational dive schools will only certify basic divers to depths of , and at these depths narcosis does not present a significant risk. Further training is normally required for certification up to on air, and this training should include a discussion of narcosis, its effects, and cure. Some diver training agencies offer specialized training to prepare recreational divers to go to depths of , often consisting of further theory and some practice in deep dives under close supervision. Scuba organizations that train for diving beyond recreational depths, may forbid diving with gases that cause too much narcosis at depth in the average diver, and strongly encourage the use of other breathing gas mixes containing helium in place of some or all of the nitrogen in air – such as trimix and heliox – because helium has no narcotic effect. The use of these gases forms part of technical diving and requires further training and certification.
While the individual diver cannot predict exactly at what depth the onset of narcosis will occur on a given day, the first symptoms of narcosis for any given diver are often more predictable and personal. For example, one diver may have trouble with eye focus (close accommodation for middle-aged divers), another may experience feelings of euphoria, and another feelings of claustrophobia. Some divers report that they have hearing changes, and that the sound their exhaled bubbles make becomes different. Specialist training may help divers to identify these personal onset signs, which may then be used as a signal to ascend to avoid the narcosis, although severe narcosis may interfere with the judgement necessary to take preventive action.
Deep dives should be made only after a gradual training to test the individual diver's sensitivity to increasing depths, with careful supervision and logging of reactions. Diving organizations such as Global Underwater Explorers (GUE) emphasize that such sessions are for the purpose of gaining experience in recognizing the onset symptoms of narcosis for an individual , which are somewhat more repeatable than for the average group of divers. Scientific evidence does not show that a diver can train to overcome any measure of narcosis at a given depth or become tolerant of it.
Equivalent narcotic depth (END) is a commonly used way of expressing the narcotic effect of different breathing gases. The National Oceanic and Atmospheric Administration (NOAA) Diving Manual now states that oxygen and nitrogen should be considered equally narcotic. Standard tables, based on relative lipid solubilities, list conversion factors for narcotic effect of other gases. For example, hydrogen at a given pressure has a narcotic effect equivalent to nitrogen at 0.55 times that pressure, so in principle it should be usable at more than twice the depth. Argon, however, has 2.33 times the narcotic effect of nitrogen, and is a poor choice as a breathing gas for diving (it is used as a drysuit inflation gas, owing to its low thermal conductivity). Some gases have other dangerous effects when breathed at pressure; for example, high-pressure oxygen can lead to oxygen toxicity. Although helium is the least intoxicating of the breathing gases, at greater depths it can cause high pressure nervous syndrome, a still mysterious but apparently unrelated phenomenon. Inert gas narcosis is only one factor influencing the choice of gas mixture; the risks of decompression sickness and oxygen toxicity, cost, and other factors are also important.
Because of similar and additive effects, divers should avoid sedating medications and drugs, such as marijuana and alcohol before any dive. A hangover, combined with the reduced physical capacity that goes with it, makes nitrogen narcosis more likely. Experts recommend total abstinence from alcohol for at least 12 hours before diving, and longer for other drugs. Abstinence time needed for marijuana is unknown, but owing to the much longer half-life of the active agent of this drug in the body, it is likely to be longer than for alcohol.
Treatment of diving disorders depends on the specific disorder or combination of disorders, but two treatments are commonly associated with first aid and definitive treatment where diving is involved. These are first aid oxygen administration at high concentration, which is seldom contraindicated, and generally recommended as a default option in diving accidents where there is any significant probability of hypoxia, and hyperbaric oxygen therapy (HBO), which is the definitive treatment for most incidences of decompression illness. Hyperbaric treatment on other breathing gases is also used for treatment of decompression sickness if HBO is inadequate.
The management of narcosis is simply to ascend to shallower depths; the effects then disappear within minutes. In the event of complications or other conditions being present, ascending is always the correct initial response. Should problems remain, then it is necessary to abort the dive. The decompression schedule can still be followed unless other conditions require emergency assistance.
The symptoms of narcosis may be caused by other factors during a dive: ear problems causing disorientation or nausea; early signs of oxygen toxicity causing visual disturbances; or hypothermia causing rapid breathing and shivering. Nevertheless, the presence of any of these symptoms should imply narcosis. Alleviation of the effects upon ascending to a shallower depth will confirm the diagnosis. Given the setting, other likely conditions do not produce reversible effects. In the rare event of misdiagnosis when another condition is causing the symptoms, the initial management – ascending closer to the surface – is still essential.
A method to increase pilot resistance to airsickness consists of repetitive exposure to the flying conditions that initially resulted in airsickness. In other words, repeated exposure to the flight environment decreases an individual’s susceptibility to subsequent airsickness. Recently, several devices have been introduced that are intended to reduce motion sickness through stimulation of various body parts (usually the wrist).
Professional divers are screened for risk factors during initial and periodical medical examination for fitness to dive. In most cases recreational divers are not medically screened, but are required to provide a medical statement before acceptance for training in which the most common and easy to identify risk factors must be declared. If these factors are declared, the diver may be required to be examined by a medical practitioner, and may be disqualified from diving if the conditions indicate.
Asthma, Marfan syndrome, and COPD pose a very high risk of pneumothorax. In some countries these may be considered absolute contraindications, while in others the severity may be taken into consideration. Asthmatics with a mild and well controlled condition may be permitted to dive under restricted circumstances.
A significant part of entry level diver training is focused on understanding the risks and procedural avoidance of barotrauma. Professional divers and recreational divers with rescue training are trained in the basic skills of recognizing and first aid management of diving barotrauma.
As a general rule, any diver who has breathed gas under pressure at any depth who surfaces unconscious, loses consciousness soon after surfacing, or displays neurological symptoms within about 10 minutes of surfacing should be assumed to be suffering from arterial gas embolism.
Symptoms of arterial gas embolism may be present but masked by environmental effects such as hypothermia, or pain from other obvious causes. Neurological examination is recommended when there is suspicion of lung overexpansion injury. Symptoms of decompression sickness may be very similar to, and confused with, symptoms of arterial gas embolism, however, treatment is basically the same. Discrimination between gas embolism and decompression sickness may be difficult for injured divers, and both may occur simultaneously. Dive history may eliminate decompression sickness in many cases, and the presence of symptoms of other lung overexpansion injury would raise the probability of gas embolism.
The gold standard for diagnosis is identification of trypanosomes in a patient sample by microscopic examination. Patient samples that can be used for diagnosis include chancre fluid, lymph node aspirates, blood, bone marrow, and, during the neurological stage, cerebrospinal fluid. Detection of trypanosome-specific antibodies can be used for diagnosis, but the sensitivity and specificity of these methods are too variable to be used alone for clinical diagnosis. Further, seroconversion occurs after the onset of clinical symptoms during a "T. b. rhodesiense" infection, so is of limited diagnostic use.
Trypanosomes can be detected from patient samples using two different preparations. A wet preparation can be used to look for the motile trypanosomes. Alternatively, a fixed (dried) smear can be stained using Giemsa's or Field's technique and examined under a microscope. Often, the parasite is in relatively low abundance in the sample, so techniques to concentrate the parasites can be used prior to microscopic examination. For blood samples, these include centrifugation followed by examination of the buffy coat; mini anion-exchange/centrifugation; and the quantitative buffy coat (QBC) technique. For other samples, such as spinal fluid, concentration techniques include centrifugation followed by examination of the sediment.
Three serological tests are also available for detection of the parasite: the micro-CATT, wb-CATT, and wb-LATEX. The first uses dried blood, while the other two use whole blood samples. A 2002 study found the wb-CATT to be the most efficient for diagnosis, while the wb-LATEX is a better exam for situations where greater sensitivity is required.
If a patent foramen ovale (PFO) is suspected, an examination by echocardiography may be performed to diagnose the defect. In this test, very fine bubbles are introduced into a patient's vein by agitating saline in a syringe to produce the bubbles, then injecting them into an arm vein. A few seconds later, these bubbles may be clearly seen in the ultrasound image, as they travel through the patient's right atrium and ventricle. At this time, bubbles may be observed directly crossing a septal defect, or else a patent foramen ovale may be opened temporarily by asking the patient to perform the Valsalva maneuver while the bubbles are crossing through the right heart – an action which will open the foramen flap and show bubbles passing into the left heart. Such bubbles are too small to cause harm in the test, but such a diagnosis may alert the patient to possible problems which may occur from larger bubbles, formed during activities like underwater diving, where bubbles may grow during decompression. A PFO test may be recommended for divers intending to expose themselves to relatively high decompression stress in deep technical diving.
A head-worn, computer device with a transparent display can be used to mitigate the effects of motion sickness (and spatial disorientation) if visual indicators of the wearer’s head position are shown. Such a device functions by providing the wearer with digital reference lines in their field of vision that indicate the horizon’s position relative to the user’s head. This is accomplished by combining readings from accelerometers and gyroscopes mounted in the device (US Patent 5,966,680). This technology has been implemented in both standalone devices and Google Glass. In two NIH-backed studies, greater than 90% of patients experienced a reduction in the symptoms of motion sickness while using this technology.
As astronauts frequently have motion sickness, NASA has done extensive research on the causes and treatments for motion sickness. One very promising looking treatment is for the person suffering from motion sickness to wear LCD shutter glasses that create a stroboscopic vision of 4 Hz with a dwell of 10 milliseconds.
Dysbarism refers to medical conditions resulting from changes in ambient pressure. Various activities are associated with pressure changes. underwater diving is the most frequently cited example, but pressure changes also affect people who work in other pressurized environments (for example, caisson workers), and people who move between different altitudes.
Currently there are few medically related prevention options for African Trypanosomiasis (i.e. no vaccine exists for immunity). Although the risk of infection from a tsetse fly bite is minor (estimated at less than 0.1%), the use of insect repellants, wearing long-sleeved clothing, avoiding tsetse-dense areas, implementing bush clearance methods and wild game culling are the best options to avoid infection available for local residents of affected areas.
At the 25th ISCTRC (International Scientific Council for Trypanosomiasis Research and Control) in Mombasa, Kenya, in October 1999, the idea of an African-wide initiative to control tsetse and trypanosomiasis populations was discussed. During the 36th summit of the Organization for African Unity in Lome, Togo, in July 2000, a resolution was passed to form the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). The campaign works to eradicate the tsetse vector population levels and subsequently the protozoan disease, by use of insecticide-impregnated targets, fly traps, insecticide-treated cattle, ultra-low dose aerial/ground spraying (SAT) of tsetse resting sites and the sterile insect technique (SIT). The use of SIT in Zanzibar proved effective in eliminating the entire population of tsetse flies but was expensive and is relatively impractical to use in many of the endemic countries afflicted with African trypanosomiasis.
Regular active surveillance, involving detection and prompt treatment of new infections, and tsetse fly control is the backbone of the strategy used to control sleeping sickness. Systematic screening of at-risk communities is the best approach, because case-by-case screening is not practical in endemic regions. Systematic screening may be in the form of mobile clinics or fixed screening centres where teams travel daily to areas of high infection rates. Such screening efforts are important because early symptoms are not evident or serious enough to warrant patients with gambiense disease to seek medical attention, particularly in very remote areas. Also, diagnosis of the disease is difficult and health workers may not associate such general symptoms with trypanosomiasis. Systematic screening allows early-stage disease to be detected and treated before the disease progresses, and removes the potential human reservoir. A single case of sexual transmission of West African sleeping sickness has been reported.
Space motion sickness was effectively unknown during the earliest spaceflights as these were undertaken in very cramped conditions; it seems to be aggravated by being able to freely move around and so is more common in larger spacecraft. After the "Apollo 8" and "Apollo 9" flights, where astronauts reported space motion sickness to Mission Control and then were subsequently removed from the flight list, astronauts (e.g. the Skylab 4 crew) attempted to prevent Mission Control from learning about their own SAS experience, apparently out of concern for their future flight assignment potential.
As with sea sickness and car sickness, space motion sickness symptoms can vary from mild nausea and disorientation, to vomiting and intense discomfort; headaches and nausea are often reported in varying degrees. About half of sufferers experience mild symptoms; only around 10% suffer severely. The most extreme reaction yet recorded was that felt by Senator Jake Garn in 1985. After his flight NASA jokingly began using the informal "Garn scale" to measure reactions to space sickness. In most cases, symptoms last from 2–4 days. In an interview with Carol Butler, when asked about the origins of "Garn", Robert E. Stevenson was quoted as saying:
The incidence of clinical HAPE in unacclimatized travelers exposed to high altitude (~) appears to be less than 1%. The U.S. Army Pike's Peak Research Laboratory has exposed sea-level-resident volunteers rapidly and directly to high altitude; during 30 years of research involving about 300 volunteers (and over 100 staff members), only three have been evacuated with suspected HAPE.
Arterial gas embolism (AGE) is a complication of lung barotrauma of ascent. It occurs when breathing gas is introduced to the circulation on the arterial side via lung over-pressure trauma. AGE can present in similar ways to arterial blockages seen in other medical situations. Affected people may suffer strokes, with paralysis or numbness down one side; they may suffer heart attacks; they may suffer pulmonary embolism with shortness of breath and chest pain. It is often impossible to distinguish AGE from DCS, but luckily it is rarely necessary for physicians to be able to distinguish between the two, as treatment is the same. Sometimes AGE and DCS are lumped into a single entity, Decompression Illness (DCI).
Individual susceptibility to HAPE is difficult to predict. The most reliable risk factor is previous susceptibility to HAPE, and there is likely to be a genetic basis to this condition, perhaps involving the gene for angiotensin converting enzyme (ACE). Recently, scientists have found the similarities between low amounts of 2,3-BPG (also known as 2,3-DPG) with the occurrence of HAPE at high altitudes. Persons with sleep apnea are susceptible due to irregular breathing patterns while sleeping at high altitudes.