Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis can be assisted with a number of different scoring systems.
Decompression sickness should be suspected if any of the symptoms associated with the condition occurs following a drop in pressure, in particular, within 24 hours of diving. In 1995, 95% of all cases reported to Divers Alert Network had shown symptoms within 24 hours. An alternative diagnosis should be suspected if severe symptoms begin more than six hours following decompression without an altitude exposure or if any symptom occurs more than 24 hours after surfacing. The diagnosis is confirmed if the symptoms are relieved by recompression. Although MRI or CT can frequently identify bubbles in DCS, they are not as good at determining the diagnosis as a proper history of the event and description of the symptoms.
In high-altitude conditions, oxygen enrichment can counteract the hypoxia related effects of altitude sickness. A small amount of supplemental oxygen reduces the equivalent altitude in climate-controlled rooms. At (), raising the oxygen concentration level by 5% via an oxygen concentrator and an existing ventilation system provides an effective altitude of (), which is more tolerable for those unaccustomed to high altitudes.
Oxygen from gas bottles or liquid containers can be applied directly via a nasal cannula or mask. Oxygen concentrators based upon pressure swing adsorption (PSA), VSA, or vacuum-pressure swing adsorption (VPSA) can be used to generate the oxygen if electricity is available. Stationary oxygen concentrators typically use PSA technology, which has performance degradations at the lower barometric pressures at high altitudes. One way to compensate for the performance degradation is to utilize a concentrator with more flow capacity. There are also portable oxygen concentrators that can be used on vehicular DC power or on internal batteries, and at least one system commercially available measures and compensates for the altitude effect on its performance up to . The application of high-purity oxygen from one of these methods increases the partial pressure of oxygen by raising the FiO (fraction of inspired oxygen).
Immediate treatment with 100% oxygen, followed by recompression in a hyperbaric chamber, will in most cases result in no long-term effects. However, permanent long-term injury from DCS is possible. Three-month follow-ups on diving accidents reported to DAN in 1987 showed 14.3% of the 268 divers surveyed had ongoing symptoms of Type II DCS, and 7% from Type I DCS. Long-term follow-ups showed similar results, with 16% having permanent neurological sequelae.
First aid is common for both DCS and AGE:
- Monitor the patient for responsiveness, airway, breathing and circulation, resuscitate if necessary.
- Treat for shock.
- Lay the patient on their back, or for drowsy, unconscious, or nauseated victims, on their side.
- Administer 100% oxygen as soon as possible.
- Seek immediate medical assistance, locate a hospital with hyperbaric facilities and plan for possible transport.
- Allow the patient to drink water or isotonic fluids only if responsive, stable, and not suffering from nausea or stomach pain. Administration of intravenous saline solution is preferable.
- Record details of recent dives and responses to first aid treatment and provide to the treating medical specialist. The diving details should include depth and time profiles, breathing gases used and surface intervals.
Treatment for the "Decompression Sickness" and the "Arterial Gas Embolism" components of DCI may differ significantly. Refer to the separate treatments under those articles.
Generally, high-altitude pulmonary edema (HAPE) or AMS precede HACE. In patients with AMS, the onset of HACE is usually indicated by vomiting, headache that does not respond to non-steroidal anti-inflammatory drugs, hallucinations, and stupor. In some situations, however, AMS progresses to HACE without these symptoms. HACE must be distinguished from conditions with similar symptoms, including stroke, intoxication, psychosis, diabetic symptoms, meningitis, or ingestion of toxic substances. It should be the first diagnosis ruled out when sickness occurs while ascending to a high altitude.
HACE is generally preventable by ascending gradually with frequent rest days while climbing or trekking. Not ascending more than daily and not sleeping at a greater height than more than the previous night is recommended. The risk of developing HACE is diminished if acetazolamide or dexamethasone are administered. Generally, the use of acetazolamide is preferred, but dexamethasone can be used for prevention if there are side effects or contraindications. Some individuals are more susceptible to HACE than others, and physical fitness is not preventative. Age and sex do not by themselves affect vulnerability to HACE.
Recompression treatment in a hyperbaric chamber was initially used as a life-saving tool to treat decompression sickness in caisson workers and divers who stayed too long at depth and developed decompression sickness. Now, it is a highly specialized treatment modality that has been found to be effective in the treatment of many conditions where the administration of oxygen under pressure has been found to be beneficial. Studies have shown it to be quite effective in some 13 indications approved by the Undersea and Hyperbaric Medical Society.
Hyperbaric oxygen treatment is generally preferred when effective, as it is usually a more efficient and lower risk method of reducing symptoms of decompression illness, However, in some cases recompression to pressures where oxygen toxicity is unacceptable may be required to eliminate the bubbles in the tissues that cause the symptoms.
Travelers who are susceptible to motion sickness can minimize symptoms by:
- Choosing a window seat with a view of the ground or of lower clouds, such that motion can be detected. This will not work if the plane is flown in the clouds for a long duration.
- Choosing seats with the smoothest ride in regards to pitch (the seats over the wings in an airplane). (This may not be sufficient for sensitive individuals who need to see ground movement)
- Sitting facing forward while focusing on distant objects rather than trying to read or look at something inside the airplane.
- Eating dry crackers, olives or suck on a lemon, to dry out the mouth, lessening nausea.
- Drinking a carbonated beverage.
All divers should be free of conditions and illnesses that would negatively impact their safety and well-being underwater. The diving medical physician should be able to identify, treat and advise divers about illnesses and conditions that would cause them to be at increased risk for a diving accident.
Some reasons why a person should not be allowed to dive are as follows:
- Disorders that lead to altered consciousness: conditions that produce reduced awareness or sedation from medication, drugs, marijuana or alcohol; fainting, heart problems and seizure activity.
- Disorders that substantially increase the risk of barotrauma injury conditions or diseases that are associated with air trapping in closed spaces, such as sinuses, middle ear, lungs and gastrointestinal tract. Severe asthma is an example.
- Disorders that may lead to erratic and irresponsible behavior: included here would be immaturity, psychiatric disorders, diving while under the influence of medications, drugs and alcohol or any medical disorder that results in cognitive defects.
Conditions that may increase risk of diving disorders:
- Patent foramen ovale
- Diabetes mellitus — No serious problems should be expected during dives due to hypoglycaemia in divers with well-controlled diabetes. Long-term complications of diabetes should be considered and may be a contrindication.
- Asthma
Conditions considered temporary reasons to suspend diving activities:
- Pregnancy—It is unlikely that literature research can establish the effect of scuba diving on the unborn human fetus as there is insufficient data, and women tend to comply with the diving industry recommendation not to dive while pregnant.
Professional divers are screened for risk factors during initial and periodical medical examination for fitness to dive. In most cases recreational divers are not medically screened, but are required to provide a medical statement before acceptance for training in which the most common and easy to identify risk factors must be declared. If these factors are declared, the diver may be required to be examined by a medical practitioner, and may be disqualified from diving if the conditions indicate.
Asthma, Marfan syndrome, and COPD pose a very high risk of pneumothorax. In some countries these may be considered absolute contraindications, while in others the severity may be taken into consideration. Asthmatics with a mild and well controlled condition may be permitted to dive under restricted circumstances.
Patients with HACE should be brought to lower altitudes and provided supplemental oxygen, and rapid descent is sometimes needed to prevent mortality. Early recognition is important because as the condition progresses patients are unable to descend without assistance. Dexamethasone should also be administered, although it fails to ameliorate some symptoms that can be cured by descending to a lower altitude. It can also mask symptoms, and they sometimes resume upon discontinuation. Dexamethasone's prevention of angiogenesis may explain why it treats HACE well. Three studies that examined how mice and rat brains react to hypoxia gave some credence to this idea.
If available, supplemental oxygen can be used as an adjunctive therapy, or when descent is not possible. FiO2 should be titrated to maintain arterial oxygen saturation of greater than 90%, bearing in mind that oxygen supply is often limited in high altitude clinics/environments.
In addition to oxygen therapy, a portable hyperbaric chamber (Gamow bag) can by used as a temporary measure in the treatment of HACE. These devices simulate a decrease in altitude of up to 7000 ft, but they are resource intensive and symptoms will often return after discontinuation of the device. Portable hyperbaric chambers should not be used in place of descent or evacuation to definitive care.
Diuretics may be helpful, but pose risks outside of a hospital environment. Sildenafil and tadalafil may help HACE, but there is little evidence of their efficacy. Theophylline is also theorized to help the condition.
Although AMS is not life-threatening, HACE is usually fatal within 24 hours if untreated. Without treatment, the patient will enter a coma and then die. In some cases, patients have died within a few hours, and a few have survived for two days. Descriptions of fatal cases often involve climbers who continue ascending while suffering from the condition's symptoms.
Recovery varies between days and weeks, but most recover in a few days. After the condition is successfully treated, it is possible for climbers to reascend. Dexamethesone should be discontinued, but continual acetazolamide is recommended. In one study, it took patients between one week and one month to display a normal CT scan after suffering from HACE.
As a general rule, any diver who has breathed gas under pressure at any depth who surfaces unconscious, loses consciousness soon after surfacing, or displays neurological symptoms within about 10 minutes of surfacing should be assumed to be suffering from arterial gas embolism.
Symptoms of arterial gas embolism may be present but masked by environmental effects such as hypothermia, or pain from other obvious causes. Neurological examination is recommended when there is suspicion of lung overexpansion injury. Symptoms of decompression sickness may be very similar to, and confused with, symptoms of arterial gas embolism, however, treatment is basically the same. Discrimination between gas embolism and decompression sickness may be difficult for injured divers, and both may occur simultaneously. Dive history may eliminate decompression sickness in many cases, and the presence of symptoms of other lung overexpansion injury would raise the probability of gas embolism.
A method to increase pilot resistance to airsickness consists of repetitive exposure to the flying conditions that initially resulted in airsickness. In other words, repeated exposure to the flight environment decreases an individual’s susceptibility to subsequent airsickness. Recently, several devices have been introduced that are intended to reduce motion sickness through stimulation of various body parts (usually the wrist).
The most straightforward way to avoid nitrogen narcosis is for a diver to limit the depth of dives. Since narcosis becomes more severe as depth increases, a diver keeping to shallower depths can avoid serious narcosis. Most recreational dive schools will only certify basic divers to depths of , and at these depths narcosis does not present a significant risk. Further training is normally required for certification up to on air, and this training should include a discussion of narcosis, its effects, and cure. Some diver training agencies offer specialized training to prepare recreational divers to go to depths of , often consisting of further theory and some practice in deep dives under close supervision. Scuba organizations that train for diving beyond recreational depths, may forbid diving with gases that cause too much narcosis at depth in the average diver, and strongly encourage the use of other breathing gas mixes containing helium in place of some or all of the nitrogen in air – such as trimix and heliox – because helium has no narcotic effect. The use of these gases forms part of technical diving and requires further training and certification.
While the individual diver cannot predict exactly at what depth the onset of narcosis will occur on a given day, the first symptoms of narcosis for any given diver are often more predictable and personal. For example, one diver may have trouble with eye focus (close accommodation for middle-aged divers), another may experience feelings of euphoria, and another feelings of claustrophobia. Some divers report that they have hearing changes, and that the sound their exhaled bubbles make becomes different. Specialist training may help divers to identify these personal onset signs, which may then be used as a signal to ascend to avoid the narcosis, although severe narcosis may interfere with the judgement necessary to take preventive action.
Deep dives should be made only after a gradual training to test the individual diver's sensitivity to increasing depths, with careful supervision and logging of reactions. Diving organizations such as Global Underwater Explorers (GUE) emphasize that such sessions are for the purpose of gaining experience in recognizing the onset symptoms of narcosis for an individual , which are somewhat more repeatable than for the average group of divers. Scientific evidence does not show that a diver can train to overcome any measure of narcosis at a given depth or become tolerant of it.
Equivalent narcotic depth (END) is a commonly used way of expressing the narcotic effect of different breathing gases. The National Oceanic and Atmospheric Administration (NOAA) Diving Manual now states that oxygen and nitrogen should be considered equally narcotic. Standard tables, based on relative lipid solubilities, list conversion factors for narcotic effect of other gases. For example, hydrogen at a given pressure has a narcotic effect equivalent to nitrogen at 0.55 times that pressure, so in principle it should be usable at more than twice the depth. Argon, however, has 2.33 times the narcotic effect of nitrogen, and is a poor choice as a breathing gas for diving (it is used as a drysuit inflation gas, owing to its low thermal conductivity). Some gases have other dangerous effects when breathed at pressure; for example, high-pressure oxygen can lead to oxygen toxicity. Although helium is the least intoxicating of the breathing gases, at greater depths it can cause high pressure nervous syndrome, a still mysterious but apparently unrelated phenomenon. Inert gas narcosis is only one factor influencing the choice of gas mixture; the risks of decompression sickness and oxygen toxicity, cost, and other factors are also important.
Because of similar and additive effects, divers should avoid sedating medications and drugs, such as marijuana and alcohol before any dive. A hangover, combined with the reduced physical capacity that goes with it, makes nitrogen narcosis more likely. Experts recommend total abstinence from alcohol for at least 12 hours before diving, and longer for other drugs. Abstinence time needed for marijuana is unknown, but owing to the much longer half-life of the active agent of this drug in the body, it is likely to be longer than for alcohol.
If a patent foramen ovale (PFO) is suspected, an examination by echocardiography may be performed to diagnose the defect. In this test, very fine bubbles are introduced into a patient's vein by agitating saline in a syringe to produce the bubbles, then injecting them into an arm vein. A few seconds later, these bubbles may be clearly seen in the ultrasound image, as they travel through the patient's right atrium and ventricle. At this time, bubbles may be observed directly crossing a septal defect, or else a patent foramen ovale may be opened temporarily by asking the patient to perform the Valsalva maneuver while the bubbles are crossing through the right heart – an action which will open the foramen flap and show bubbles passing into the left heart. Such bubbles are too small to cause harm in the test, but such a diagnosis may alert the patient to possible problems which may occur from larger bubbles, formed during activities like underwater diving, where bubbles may grow during decompression. A PFO test may be recommended for divers intending to expose themselves to relatively high decompression stress in deep technical diving.
The management of narcosis is simply to ascend to shallower depths; the effects then disappear within minutes. In the event of complications or other conditions being present, ascending is always the correct initial response. Should problems remain, then it is necessary to abort the dive. The decompression schedule can still be followed unless other conditions require emergency assistance.
The symptoms of narcosis may be caused by other factors during a dive: ear problems causing disorientation or nausea; early signs of oxygen toxicity causing visual disturbances; or hypothermia causing rapid breathing and shivering. Nevertheless, the presence of any of these symptoms should imply narcosis. Alleviation of the effects upon ascending to a shallower depth will confirm the diagnosis. Given the setting, other likely conditions do not produce reversible effects. In the rare event of misdiagnosis when another condition is causing the symptoms, the initial management – ascending closer to the surface – is still essential.
A significant part of entry level diver training is focused on understanding the risks and procedural avoidance of barotrauma. Professional divers and recreational divers with rescue training are trained in the basic skills of recognizing and first aid management of diving barotrauma.
The incidence of clinical HAPE in unacclimatized travelers exposed to high altitude (~) appears to be less than 1%. The U.S. Army Pike's Peak Research Laboratory has exposed sea-level-resident volunteers rapidly and directly to high altitude; during 30 years of research involving about 300 volunteers (and over 100 staff members), only three have been evacuated with suspected HAPE.
Individual susceptibility to HAPE is difficult to predict. The most reliable risk factor is previous susceptibility to HAPE, and there is likely to be a genetic basis to this condition, perhaps involving the gene for angiotensin converting enzyme (ACE). Recently, scientists have found the similarities between low amounts of 2,3-BPG (also known as 2,3-DPG) with the occurrence of HAPE at high altitudes. Persons with sleep apnea are susceptible due to irregular breathing patterns while sleeping at high altitudes.
Dysbarism refers to medical conditions resulting from changes in ambient pressure. Various activities are associated with pressure changes. underwater diving is the most frequently cited example, but pressure changes also affect people who work in other pressurized environments (for example, caisson workers), and people who move between different altitudes.
The gold standard for diagnosis is identification of trypanosomes in a patient sample by microscopic examination. Patient samples that can be used for diagnosis include chancre fluid, lymph node aspirates, blood, bone marrow, and, during the neurological stage, cerebrospinal fluid. Detection of trypanosome-specific antibodies can be used for diagnosis, but the sensitivity and specificity of these methods are too variable to be used alone for clinical diagnosis. Further, seroconversion occurs after the onset of clinical symptoms during a "T. b. rhodesiense" infection, so is of limited diagnostic use.
Trypanosomes can be detected from patient samples using two different preparations. A wet preparation can be used to look for the motile trypanosomes. Alternatively, a fixed (dried) smear can be stained using Giemsa's or Field's technique and examined under a microscope. Often, the parasite is in relatively low abundance in the sample, so techniques to concentrate the parasites can be used prior to microscopic examination. For blood samples, these include centrifugation followed by examination of the buffy coat; mini anion-exchange/centrifugation; and the quantitative buffy coat (QBC) technique. For other samples, such as spinal fluid, concentration techniques include centrifugation followed by examination of the sediment.
Three serological tests are also available for detection of the parasite: the micro-CATT, wb-CATT, and wb-LATEX. The first uses dried blood, while the other two use whole blood samples. A 2002 study found the wb-CATT to be the most efficient for diagnosis, while the wb-LATEX is a better exam for situations where greater sensitivity is required.
Taravana is a disease often found among Polynesian island natives who habitually dive deep without breathing apparatus many times in close succession, usually for food or pearls. These free-divers may make 40 to 60 dives a day, each of 30 or 40 metres (100 to 140 feet).
Taravana seems to be decompression sickness. The usual symptoms are vertigo, nausea, lethargy, paralysis and death. The word "taravana" is Tuamotu Polynesian for "to fall crazily".
Taravana is also used to describe someone who is "crazy because of the sea".
As astronauts frequently have motion sickness, NASA has done extensive research on the causes and treatments for motion sickness. One very promising looking treatment is for the person suffering from motion sickness to wear LCD shutter glasses that create a stroboscopic vision of 4 Hz with a dwell of 10 milliseconds.
There is a lack of good evidence to support the use of any particular intervention for morning sickness.