Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
During an eye examination, a test such as cover testing or the Hirschberg test is used in the diagnosis and measurement of strabismus and its impact on vision. Retinal birefringence scanning can be used for screening of young children for eye misaligments.
Several classifications are made when diagnosing strabismus.
A determination of the prevalence of anisometropia has several difficulties. First of all, the measurement of refractive error may vary from one measurement to the next. Secondly, different criteria have been employed to define anisometropia, and the boundary between anisometropia and isometropia depend on their definition.
Several studies have found that anisometropia occurs more frequently and tends to be more severe for persons with high ametropia, and that this is particularly true for myopes. Anisometropia follows a U-shape distribution according to age: it is frequent in infants aged only a few weeks, is more rare in young children, comparatively more frequent in teenagers and young adults, and more prevalent after presbyopia sets in, progressively increasing into old age.
One study estimated that 6% of those between the ages of 6 and 18 have anisometropia.
Notwithstanding research performed on the biomechanical, structural and optical characteristics of anisometropic eyes, the underlying reasons for anisometropia are still poorly understood.
Anisometropic persons who have strabismus are mostly far-sighted, and almost all of these have (or have had) esotropia. However, there are indications that anisometropia influences the long-term outcome of a surgical correction of an inward squint, and vice versa. More specifically, for patients with esotropia who undergo strabismus surgery, anisometropia may be one of the risk factors for developing consecutive exotropia and poor binocular function may be a risk factor for anisometropia to develop or increase.
The cross-cover test, or alternating cover test is usually employed to detect heterophoria. One eye is covered, and then the cover is moved immediately over to the other eye. With heterophoria, when the cover is moved to the other eye, the eye that has just been uncovered can be seen to move from a deviated point. The difference between heterotropia and heterophoria can be easily understood as follows. With heterotropia, a correcting movement of the eye can be detected already by the simple cover test; with heterophoria, such correcting movement only takes place in the cross-cover test. People with heterophoria are able to create and maintain binocular fusion through vergence, and the cross-cover test purposely breaks this fusion, making the latent misaligment visible.
Whereas the cross-cover test allows a qualitative assessment to be done, a quantitative assessment of latent eye position disorders can be done using the Lancaster red-green test.
As with other binocular vision disorders, the primary goal is comfortable, single, clear, normal binocular vision at all distances and directions of gaze.
Strabismus is usually treated with a combination of eyeglasses, vision therapy, and surgery, depending on the underlying reason for the misalignment.
Whereas amblyopia (lazy eye), if minor and detected early, can often be corrected with use of an eye patch on the dominant eye and/or vision therapy, the use of eye patches is unlikely to change the angle of strabismus.
The prognosis for each patient with esotropia will depend upon the origin and classification of their condition. However, in general, management will take the following course:
1. Identify and treat any underlying systemic condition.
2. Prescribe any glasses required and allow the patient time to 'settle into' them.
3. Use occlusion to treat any amblyopia present and encourage alternation.
4. Where appropriate, orthoptic exercises can be used to attempt to restore binocularity.
5. Where appropriate, prismatic correction can be used, either temporarily or permanently, to relieve symptoms of double vision.
6. In specific cases, and primarily in adult patients, botulinum toxin can be used either as a permanent therapeutic approach, or as a temporary measure to prevent contracture of muscles prior to surgery
7. Where necessary, extra-ocular muscle surgery can be undertaken to improve cosmesis and, on occasion, restore binocularity.
In order to understand how heterophoria occurs, we must understand of how the eye can maintain proper fixation with non aligned visual axis. Heterophoria is actually the misalignment of the visual axis of both eyes. In other words, one or both eyes are not properly fixated to an object of interest. However, we must know that the eyes have a fusional vergence system which corrects this misalignment.
In the United States, testing for "horizontal gaze nystagmus" is one of a battery of field sobriety tests used by police officers to determine whether a suspect is driving under the influence of alcohol. The test involves observation of the suspect's pupil as it follows a moving object, noting
1. lack of smooth pursuit,
2. distinct and sustained nystagmus at maximum deviation, and
3. the onset of nystagmus prior to 45 degrees.
The horizontal gaze nystagmus test has been highly criticized and major errors in the testing methodology and analysis found. However, the validity of the horizontal gaze nystagmus test for use as a field sobriety test for persons with a blood alcohol level between 0.04–0.08 is supported by peer reviewed studies and has been found to be a more accurate indication of blood alcohol content than other standard field sobriety tests.
A comprehensive eye examination including an ocular motility (i.e., eye movement) evaluation and an evaluation of the internal ocular structures will allow an eye doctor to accurately diagnose the exotropia. Although glasses and/or patching therapy, exercises, or prisms may reduce or help control the outward-turning eye in some children, surgery is often required.
There is a common form of exotropia known as "convergence insufficiency" that responds well to orthoptic vision therapy including exercises. This disorder is characterized by an inability of the eyes to work together when used for near viewing, such as reading. Instead of the eyes focusing together on the near object, one deviates outward.
"Consecutive exotropia" is an exotropia that arises after an initial esotropia. Most often it results from surgical overcorrection of the initial esotropia. It can be addressed with further surgery or with vision therapy; vision therapy has shown promising results if the consecutive exotropia is intermittent, alternating and of small magnitude. (Consecutive exotropia may however also spontaneously develop from esotropia, without surgery or botulinum toxin treatment.)
Because of the risks of surgery, and because about 35% of people require at least one more surgery, many people try vision therapy first. This consists of visual exercises. Although vision therapy is generally not covered by American health insurance companies, many large insurers such as Aetna have recently begun offering full or partial coverage in response to recent studies.
Strabismus surgery is sometimes recommended if the exotropia is present for more than half of each day or if the frequency is increasing over time. It is also indicated if a child has significant exotropia when reading or viewing near objects or if there is evidence that the eyes are losing their ability to work as a single unit (binocular vision). If none of these criteria are met, surgery may be postponed pending simple observation with or without some form of eyeglass and/or patching therapy. In very mild cases, there is a chance that the exotropia will diminish with time. The long-term success of surgical treatment for conditions such as intermittent exotropia is not well proven, and surgery can often result in a worsening of symptoms due to overcorrection. Evidence from the available literature suggests that unilateral surgery was more effective than bilateral surgery for individuals affected with intermittent exotropia.
The surgical procedure for the correction of exotropia involves making a small incision in the tissue covering the eye in order to reach the eye muscles. The appropriate muscles are then repositioned in order to allow the eye to move properly. The procedure is usually done under general anesthesia. Recovery time is rapid, and most people are able to resume normal activities within a few days. Following surgery, corrective eyeglasses may be needed and, in many cases, further surgery is required later to keep the eyes straight.
When a child requires surgery, the procedure is usually performed before the child attains school age. This is easier for the child and gives the eyes a better chance to work together. As with all surgery, there are some risks. However, strabismus surgery is usually a safe and effective treatment.
Refractive surgery causes only minimal size differences, similar to contact lenses. In a study performed on 53 children who had amblyopia due to anisometropia, surgical correction of the anisometropia followed by strabismus surgery if required led to improved visual acuity and even to stereopsis in many of the children ("see:" Refractive surgery#Children).
"Congenital esotropia," or "infantile esotropia," is a specific sub-type of primary concomitant esotropia. It is a constant esotropia of large and consistent size with onset between birth and six months of age. It is not associated with hyperopia, so the exertion of accommodative effort will not significantly affect the angle of deviation. It is, however, associated with other ocular dysfunctions including oblique muscle over-actions, Dissociated Vertical Deviation (DVD,) Manifest Latent Nystagmus, and defective abduction, which develops as a consequence of the tendency of those with infantile esotropia to 'cross fixate.' Cross fixation involves the use of the right eye to look to the left and the left eye to look to the right; a visual pattern that will be 'natural' for the person with the large angle esotropia whose eye is already deviated towards the opposing side.
The origin of the condition is unknown, and its early onset means that the affected individual's potential for developing binocular vision is limited. The appropriate treatment approach remains a matter of some debate. Some ophthalmologists favour an early surgical approach as offering the best prospect of binocularity whilst others remain unconvinced that the prospects of achieving this result are good enough to justify the increased complexity and risk associated with operating on those under the age of one year.
The appropriate treatment for binocular diplopia will depend upon the cause of the condition producing the symptoms. Efforts must first be made to identify and treat the underlying cause of the problem. Treatment options include eye exercises, wearing an eye patch on alternative eyes, prism correction, and in more extreme situations, surgery or botulinum toxin.
If diplopia turns out to be intractable, it can be managed as last resort by obscuring part of the patient's field of view. This approach is outlined in the article on diplopia occurring in association with a condition called "horror fusionis".
Congenital nystagmus has traditionally been viewed as non-treatable, but medications have been discovered in recent years that show promise in some patients. In 1980, researchers discovered that a drug called baclofen could effectively stop periodic alternating nystagmus. Subsequently, gabapentin, an anticonvulsant, was found to cause improvement in about half the patients who received it to relieve symptoms of nystagmus. Other drugs found to be effective against nystagmus in some patients include memantine, levetiracetam, 3,4-diaminopyridine (available in the US to eligible patients with downbeat nystagmus at no cost under an expanded access program), 4-aminopyridine, and acetazolamide. Several therapeutic approaches, such as contact lenses, drugs, surgery, and low vision rehabilitation have also been proposed. For example, it has been proposed that mini-telescopic eyeglasses suppress nystagmus.
Surgical treatment of Congenital Nystagmus is aimed at improving the abnormal head posture, simulating artificial divergence or weakening the horizontal recti muscles. Clinical trials of a surgery to treat nystagmus (known as tenotomy) concluded in 2001. Tenotomy is now being performed regularly at numerous centres around the world. The surgery developed by Louis F. Dell'Osso Ph.D. aims to reduce the eye shaking (oscillations), which in turn tends to improve visual acuity.
Acupuncture has conflicting evidence as to having beneficial effects on the symptoms of nystagmus. Benefits have been seen in treatments where acupuncture points of the neck were used, specifically points on the sternocleidomastoid muscle. Benefits of acupuncture for treatment of nystagmus include a reduction in frequency and decreased slow phase velocities which led to an increase in foveation duration periods both during and after treatment. By the standards of evidence-based medicine, the quality of these studies can be considered poor (for example, Ishikawa has a study sample size of just six, is unblinded and without proper control), and given high quality studies showing that acupuncture has no effect beyond placebo, the results of these studies have to be considered clinically irrelevant until higher quality studies are produced.
Physical therapy or Occupational therapy is also used to treat nystagmus. Treatment consist of learning compensatory strategies to take over for the impaired system.
Diplopia has a diverse range of ophthalmologic, infectious, autoimmune, neurological, and neoplastic causes.
Exotropia is a form of strabismus where the eyes are deviated outward. It is the opposite of esotropia and usually involves more severe axis deviation than exophoria. People with exotropia often experience crossed diplopia. Intermittent exotropia is a fairly common condition. "Sensory exotropia" occurs in the presence of poor vision. Infantile exotropia (sometimes called "congenital exotropia") is seen during the first year of life, and is less common than "essential exotropia" which usually becomes apparent several years later.
The brain's ability to see three-dimensional objects depends on proper alignment of the eyes. When both eyes are properly aligned and aimed at the same target, the visual portion of the brain fuses the forms into a single image. When one eye turns inward, outward, upward, or downward, two different pictures are sent to the brain. This causes loss of depth perception and binocular vision. There have also been some reports of people that can "control" their afflicted eye. The term is from Greek "exo" meaning "outward" and "trope" meaning "a turning".
Exophoria can be caused by several factors, which include:
- Refractive errors - distance and near deviation approximately equal.
- Divergence excess - exodeviation is more than 15 dioptres greater for distance than near deviation.
- Convergence insufficiency - near exodeviation greater than distance deviation.
These can be due to nerve, muscle, or congenital problems, or due to mechanical anomalies. Unlike exotropia, fusion is possible in this condition, causing diplopia to be uncommon.
Exophoria is particularly common in infancy and childhood, and increases with age.
The majority of patients remain symptom free and able to maintain binocularity with only a slight face turn. Amblyopia is uncommon and, where present, rarely dense. This can be treated with occlusion, and any refractive error can also be corrected.
Duane syndrome cannot be cured, as the "missing" cranial nerve cannot be replaced, and traditionally there has been no expectation that surgery will result in any increase in the range of eye movement. Surgical intervention, therefore, has only been recommended where the patient is unable to maintain binocularity, where they are experiencing symptoms, or where they are forced to adopt a cosmetically unsightly or uncomfortable head posture in order to maintain binocularity. The aims of surgery are to place the eye in a more central position and, thus, place the field of binocularity more centrally also, and to overcome or reduce the need for the adoption of an abnormal head posture. Occasionally, surgery is not needed during childhood, but becomes appropriate later in life, as head position changes (presumably due to progressive muscle contracture).
Surgical approaches include:
- Medial rectus recession in the involved eye or both eyes. By weakening the medial rectus muscles this procedure improves the crossed-eye appearance but does not improve outward eye movements (abductions).
- Morad et al. showed improved abduction after modest unilateral medial rectus recession and lateral rectus resection in a subgroup of patients with mild eye retraction and good adduction before surgery.
- Lateral transposition of the vertical muscles described by Rosenbaum has been shown to improve range of movement of the eye. The surgical procedure produces 40-65 degrees of binocular field. Orbital wall fixation of the lateral rectus muscle (muscle is disinserted and reattached to lateral orbital wall) is recommended an effective method to inactivate a lateral rectus muscle in cases of marked anomalous innervation and severe cocontraction.
In the clinical setting, the principal difficulties in differential diagnosis arise as a consequence of the very early age at which patients with this condition first present. The clinician must be persistent in examining abduction and adduction, and in looking for any associated palpebral fissure changes or head postures, when attempting to determine whether what often presents as a common childhood squint (note-"squint" is a British term for two eyes not looking in the same direction) is in fact Duane syndrome. Fissure changes, and the other associated characteristics of Duane's such as up or down shoots and globe retraction, are also vital when deciding whether any abduction limitation is the result of Duane's and not a consequence of VI or abducens cranial nerve palsy.
Acquired Duane's syndrome is a rare event occurring after peripheral nerve palsy.
It is important to differentiate CPEO from other pathologies that may cause an ophthalmoplegia. There are specific therapies used for these pathologies.
CPEO is diagnosed via muscle biopsy. On examination of muscle fibers stained with Gömöri trichrome stain, one can see an accumulation of enlarged mitochondria. This produces a dark red staining of the muscle fibers given the name “ragged red fibers”. While ragged red fibers are seen in normal aging, amounts in excess of normal aging give a diagnosis of a mitochondrial myopathy.
Polymerase Chain Reaction (PCR), from a sample of blood or muscle tissue can determine a mutation of the mtDNA.
Elevated acetylcholine receptor antibody level which is typically seen in myasthenia gravis has been seen in certain patients of mitochondrial associated ophthalmoplegia.
It is important to have a dilated eye exam to determine if there is pigmentary retinopathy that may signify Kearns-Sayre syndrome which is associated with cardiac abnormalities.
MRI may be helpful in the diagnosis, in one study volumes of medial rectus, lateral rectus, and inferior rectus muscles in CPEO were not smaller than normal (in contrast to the profound atrophy typical of neurogenic paralysis). Although volumes of the superior rectus muscle-levator complex and superior oblique were significantly reduced.
If an optokinetic drum is available, rotate the drum in front of the patient. Ask the patient to look at the drum as you rotate it slowly. If an optokinetic drum is not available, move a strip of paper with alternating 2-inch black and white strips across the patient's visual field. Pass it in front of the patient's eye at reading distance while instructing the patient to look at it as it rapidly moves by. With normal vision, a nystagmus develops in both adults and infants. The nystagmus consists of initial slow phases in the direction of the stimulus (smooth pursuits), followed by fast, corrective phases (saccade). Presence of nystagmus indicates an intact visual pathway.
Another effective method is to hold a mirror in front of the patient and slowly rotate the mirror to either side of the patient. The patient with an intact visual pathway will maintain eye contact with herself or himself. This compelling optokinetic stimulus forces reflex slow eye movements.
OKN can be used as a crude assessment of the visual system, particularly in infants. When factitious blindness or malingering is suspected, check for optokinetic nystagmus to determine whether there is an intact visual pathway.
The optokinetic response is a combination of a slow-phase and fast-phase eye movements. It is seen when an individual follows a moving object with their eyes, which then moves out of the field of vision at which point their eye moves back to the position it was in when it first saw the object. The reflex develops at about 6 months of age.
Optokinetic nystagmus (OKN) is nystagmus that occurs in response to a rotation movement. It is present normally. The optokinetic response allows the eye to follow objects in motion when the head remains stationary (e.g., observing individual telephone poles on the side of the road as one travels by them in a car, or observing stationary objects while walking past them).
Diagnosis includes dilated fundus examination to rule out posterior uveitis, which presents with white spots across the retina along with retinitis and vasculitis.
Laboratory testing is usually used to diagnose specific underlying diseases, including rheumatologic tests (e.g. antinuclear antibody, rheumatoid factor, angiotensin converting enzyme inhibitor <-- error) and serology for infectious diseases (Syphilis, Toxoplasmosis, Tuberculosis).
Major histocompatibility antigen testing may be performed to investigate genetic susceptibility to uveitis. The most common antigens include HLA-B27, HLA-A29 (in birdshot chorioretinopathy) and HLA-B51 (in Behçet disease).
Radiology X-ray may be used to show coexisting arthritis and chest X-ray may be helpful in sarcoidosis.
There is currently no defined treatment to ameliorate the muscle weakness of CPEO. Treatments used to treat other pathologies causing ophthalmoplegia has not been shown to be effective.
Experimental treatment with tetracycline has been used to improve ocular motility in one patient. Coenzyme Q has also been used to treat this condition. However, most neuro-ophthalmologists do not ascribe to any treatment.
Ptosis associated with CPEO may be corrected with surgery to raise the lids, however due to weakness of the orbicularis oculi muscles, care must be taken not to raise the lids in excess causing an inability to close the lids. This results in an exposure keratopathy. Therefore, rarely should lid surgery be performed and only by a neuro-ophthalmologist familiar with the disease.
The most common strabismus finding is large angle exotropia which can be treated by maximal bilateral eye surgery, but due to the progressive nature of the disease, strabismus may recur. Those that have diplopia as a result of asymmetric ophthalmoplegia may be corrected with prisms or with surgery to create a better alignment of the eyes.
The prognosis is generally good for those who receive prompt diagnosis and treatment, but serious complication including cataracts, glaucoma, band keratopathy, macular edema and permanent vision loss may result if left untreated. The type of uveitis, as well as its severity, duration, and responsiveness to treatment or any associated illnesses, all factor into the outlook.
The variable course of MG may make the diagnosis difficult. In brief, the diagnosis of MG relies mostly on the patient's history and physical findings, with particular attention to neurologic, eye motility, and eyelid exams. Frequently, patients will describe experiencing alternating ptosis (lid droop in one eye that gets better, then is followed by ptosis in the other eye), as well as diplopia that worsens during in the day (with increasing extraocular muscle fatigue).
A tensilon (edrophonium chloride) test can be used, which temporarily blocks the breakdown of acetylcholine, and briefly relieves weakness; however, false-negative results are common. Single-fiber electromyography can be used to electrically stimulate single muscle fibers to determine if there is muscle weakness present. The diagnosis of MG can also be confirmed with blood work that measures the amount of blocking antibody present, but only 70% of ocular MG patients have detectable antibody levels. Additional lab and image tests for commonly associated thyroid, thymus and autoimmune diseases are also advisable.