Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A prenatal diagnostic is possible and very reliable when mother is carrier of the syndrome. First, it's necessary to determine the fetus' sex and then study X-chromosomes. In both cases, the probability to transfer the X-chromosome affected to the descendants is 50%. Male descendants who inherit the affected chromosome will express the symptoms of the syndrome, but females who do will be carriers.
The assessment for Smith-Finemen-Myers syndrome like any other mental retardation includes a detailed family history and physical exam that tests the mentality of the patient. The patient also gets a brain and skeletal imaging though CT scans or x-rays. They also does a chromosome study and certain other genetic biochemical tests to help figure out any other causes for the mental retardation.
The diagnosis of SFMS is based on visible and measurable symptoms. Until 2000, SFMS was not known to be associated with any particular gene. As of 2001, scientists do not yet know if other genes are involved in this rare disease. Generic analysis of the ATRX gene may prove to be helpful in diagnosis of SFMS.
A diagnosis can be made on the combination of clinical features. This can then be confirmed by gene sequencing.
In general, children with a small isolated nevus and a normal physical exam do not need further testing; treatment may include potential surgical removal of the nevus. If syndrome issues are suspected, neurological, ocular, and skeletal exams are important. Laboratory investigations may include serum and urine calcium and phosphate, and possibly liver and renal function tests. The choice of imaging studies depends on the suspected abnormalities and might include skeletal survey, CT scan of the head, MRI, and/or EEG.
Depending on the systems involved, an individual with Schimmelpenning syndrome may need to see an interdisciplinary team of specialists: dermatologist, neurologist, ophthalmologist, orthopedic surgeon, oral surgeon, plastic surgeon, psychologist.
Laboratory investigations usually show elevated creatine kinase, myopathic/dystrophic muscle pathology and altered α-dystroglycan. Antenatal diagnosis is possible in families with known mutations. Prenatal ultrasound may be helpful for diagnosis in families where the molecular defect is unknown.
In order to be diagnosed with AGU an individual takes a urine test, which will show indication of an increased amount of aspartylglucosamin being secreted. The confirmation of the diagnosis of aspartylglucosaminuria requires a blood test. This helps show if the enzyme aspartylglucosaminidase is present or partially absent. A skin simple will also show the amount of aspartylglucosaminidase present.
The diagnosis of IP is established by clinical findings and occasionally by corroborative skin biopsy. Molecular genetic testing of the NEMO IKBKG gene (chromosomal locus Xq28) reveals disease-causing mutations in about 80% of probands. Such testing is available clinically.
In addition, females with IP have skewed X-chromosome inactivation; testing for this can be used to support the diagnosis.
Many people in the past were misdiagnosed with a second type of IP, formerly known as IP1. This has now been given its own name - 'Hypomelanosis of Ito' (incontinentia pigmenti achromians). This has a slightly different presentation: swirls or streaks of hypopigmentation and depigmentation. It is "not" inherited and does not involve skin stages 1 or 2. Some 33–50% of patients have multisystem involvement — eye, skeletal, and neurological abnormalities. Its chromosomal locus is at Xp11, rather than Xq28.
When families have a child who has already been diagnosed with AGU, they have the option to observe the enzyme's activity that codes for AGU in future pregnancy, to help determine if the next child will also have a positive diagnosis for aspartylglucosaminuria.
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
Diagnosis of MSS is based on clinical symptoms, magnetic resonance imaging (MRI) of the brain (cerebellar atrophy particularly involving the cerebellar vermis), and muscle biopsy.
It can be associated with mutations of the SIL1 gene, and a mutation can be found in about 50% of cases.
Differential diagnosis includes Congenital Cataracts Facial Dysmorphism Neuropathy (CCFDN), Marinesco–Sjögren like syndrome with chylomicronemia, carbohydrate deficient glycoprotein syndromes, Lowe syndrome, and mitochondrial disease.
Even though clinical diagnostic criteria have not been 100 percent defined for genitopatellar syndrome, the researchers stated that the certain physical features could relate to KAT6B mutation and result in the molecular genetic testing. The researchers stated that the Individuals with two major features or one major feature and two minor features are likely to have a KAT6B mutation.
To diagnose the Genitopatellar Syndrome, there are multiple ways to evaluate.
Medical genetics consultation
- Evaluation by developmental specialist
- Feeding evaluation
- Baseline hearing evaluation
- Thyroid function tests
- Evaluation of males for cryptorchidism
- Orthopedic evaluation if contractures are present or feet/ankles are malpositioned
- Hip radiographs to evaluate for femoral head dislocation
- Renal ultrasound examination for hydronephrosis and cysts
- Echocardiogram for congenital heart defects
- Evaluation for laryngomalacia if respiratory issues are present
- Evaluation by gastroenterologist as needed, particularly if bowel malrotation is suspected
Treatment for MSS is symptomatic and supportive including physical and occupational therapy, speech therapy, and special education. Cataracts must be removed when vision is impaired, generally in the first decade of life. Hormone replacement therapy is needed if hypogonadism is present.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
No specific treatment is available. Management is only supportive and preventive.
Those who are diagnosed with the disease often die within the first few months of life. Almost all children with the disease die by the age of three.
Diagnosis is based on appearance and family history. KID syndrome or keratosis follicularis spinulosa decalvans have some similar symptoms and must be eliminated.
The diagnosis of Wilson–Turner syndrome is based upon a clinical evaluation, a detailed patient history, and identification of characteristic features. Molecular genetic testing for mutations in the HDAC8 gene is now available to confirm the diagnosis.
The diagnosis of this syndrome can be made on clinical examination and perinatal autopsy.
Koenig and Spranger (1986) noted that eye lesions are apparently nonobligatory components of the syndrome. The diagnosis of Fraser syndrome should be entertained in patients with a combination of acrofacial and urogenital malformations with or without cryptophthalmos. Thomas et al. (1986) also emphasized the occurrence of the cryptophthalmos syndrome without cryptophthalmos and proposed diagnostic criteria for Fraser syndrome. Major criteria consisted of cryptophthalmos, syndactyly, abnormal genitalia, and positive family history. Minor criteria were congenital malformation of the nose, ears, or larynx, cleft lip and/or palate, skeletal defects, umbilical hernia, renal agenesis, and mental retardation. Diagnosis was based on the presence of at least 2 major and 1 minor criteria, or 1 major and 4 minor criteria.
Boyd et al. (1988) suggested that prenatal diagnosis by ultrasound examination of eyes, digits, and kidneys should detect the severe form of the syndrome. Serville et al. (1989) demonstrated the feasibility of ultrasonographic diagnosis of the Fraser syndrome at 18 weeks' gestation. They suggested that the diagnosis could be made if 2 of the following signs are present: obstructive uropathy, microphthalmia, syndactyly, and oligohydramnios. Schauer et al. (1990) made the diagnosis at 18.5 weeks' gestation on the basis of sonography. Both the female fetus and the phenotypically normal father had a chromosome anomaly: inv(9)(p11q21). An earlier born infant had Fraser syndrome and the same chromosome 9 inversion.
Van Haelst et al. (2007) provided a revision of the diagnostic criteria for Fraser syndrome according to Thomas et al. (1986) through the addition of airway tract and urinary tract anomalies to the major criteria and removal of mental retardation and clefting as criteria. Major criteria included syndactyly, cryptophthalmos spectrum, urinary tract abnormalities, ambiguous genitalia, laryngeal and tracheal anomalies, and positive family history. Minor criteria included anorectal defects, dysplastic ears, skull ossification defects, umbilical abnormalities, and nasal anomalies. Cleft lip and/or palate, cardiac malformations, musculoskeletal anomalies, and mental retardation were considered uncommon. Van Haelst et al. (2007) suggested that the diagnosis of Fraser syndrome can be made if either 3 major criteria, or 2 major and 2 minor criteria, or 1 major and 3 minor criteria are present in a patient.
Not all of the DOOR symptoms are consistently present. They can vary in severity, and additional features can be noted in individuals affected by DOOR syndrome.
Some of these additional features are:
- Polyhydramnios (increased amniotic fluid during pregnancy) and increased nuchal fold during pregnancy
- Specific facial features such as a large nose
- Severe and sometimes refractory seizures, abnormalities on the magnetic resonance imaging of the brain
- Increased 2-oxoglutaric acid in the blood and urine - this compound is made or used by several enzymes
- Finger-like thumbs
- Visual impairment
- Peripheral neuropathy (nerves conducting sensation from extremities to the brain) and insensivity to pain
Intellectual impairment is present in all reported cases, but the severity can vary widely. The prognosis in terms of survival also varies greatly from early childhood till adulthood.
Treatments are usually based on the individuals symptoms that are displayed. The seizures are controlled with anticonvulsant medication. For the behavior problems, the doctors proscribe to a few medications and behavioral modification routines that involve therapists and other types of therapy. Even if mental retardation is severe, it does not seem to shorten the lifespan of the patient or to get worse with age.
The Wilson–Turner syndrome is characterized by mild to moderate range of intellectual disability, obesity, tapered fingers, and mood swings. Males also suffer from gynecomastia and hypogonadism. In order to be diagnosed with Wilson-Turner Syndrome, male patients must suffer from intellectual disability, obesity, and gynecomastia. Females do not necessarily have to have noticeable phenotype but can be diagnosed with this disorder by studying her family history and identifying others with the disorder. It has been noted that children with Wilson-Turner Syndrome will display speech development delay and excessive drooling. Males can be confirmed by testing androgen levels. Female carriers will show silencing of the gene a complex X inactivation.
There is currently no cure for GAPO syndrome, but some options are available to reduce the symptoms. Nearsightedness, which affects some sufferers of the disease, can be treated by corrective lenses. Unfortunately, optic atrophy as a result of degradation of the optic nerve (common with GAPO syndrome) cannot be corrected. Corticosteroids have been proposed as a treatment for optic nerve atrophy, but their effectiveness is disputed, and no steroid based treatments are currently available.
While many cases of HPMRS are caused by mutations in the PIGV gene, there may be genetic heterogeneity in the spectrum of Mabry syndrome as a whole. PIGV is a member of the molecular pathway that synthesizes the glycosylphosphatidylinositol anchor. The loss in PIGV activity results in a reduced anchoring of alkaline phosphatase to the surface membrane and an elevated alkaline phosphatase activity in the serum.
Other features include:
- Stunting
- Small hands and feet with long, tapering fingers and clinodactyly
- Dental anomalies in the form of malalignment and malocclusion
In another study of six patients, the patients were investigated further. They were found to have low levels of IGF-1 and markedly retarded bone age.
This disorder is caused by an abnormality of the TBCE gene, the locus for which is on Chromosome 1q42.3. The locus is a 230 kb region of gene with identified deletions and mutations in affected individuals. There are rare cases of the disorder not being due to a TBCE gene abnormality.
Cohen syndrome is diagnosed by clinical examination, but often difficult due to variation in expression.
Ocular complications, though rare, are listed as optic atrophy, microphthalmia, pigmentary chorioretinitis, hemeralopia (decreased vision in bright light), myopia, strabismus, nystagmus and iris/retinal coloboma.
General appearance is obesity with thin/elongated arms and legs. Micrognathia, short philtrum, and high vaulted palate are common. Variable mental retardation with occasional seizure and deafness also is characteristic of Cohen syndrome.