Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In individuals with marked hyperammonemia, a urea cycle disorder is usually high on the list of possible causes. While the immediate focus is lowering the patient's ammonia concentrations, identifying the specific cause of increased ammonia levels is key as well.
Diagnostic testing for OTC deficiency, or any individual with hyperammonemia involves plasma and urine amino acid analysis, urine organic acid analysis (to identify the presence or absence of orotic acid, as well as rule out an organic acidemia) and plasma acylcarnitines (will be normal in OTC deficiency, but can identify some other causes of hyperammonemia). An individual with untreated OTC deficiency will show decreased citrulline and arginine concentrations (because the enzyme block is proximal to these intermediates) and increased orotic acid. The increased orotic acid concentrations result from the buildup of carbamoyl phosphate. This biochemical phenotype (increased ammonia, low citrulline and increased orotic acid) is classic for OTC deficiency, but can also be seen in neonatal presentations of ornithine aminotransferase deficiency. Only severely affected males consistently demonstrate this classic biochemical phenotype.
Heterozygous females can be difficult to diagnose. With the rise of sequencing techniques, molecular testing has become preferred, particularly when the disease causing mutations in the family are known. Historically, heterozygous females were often diagnosed using an allopurinol challenge. In a female with reduced enzyme activity, an oral dose of allopurinol would be metabolized to oxypurinol ribonucleotide, which blocks the pyrimidine biosynthetic pathway. When this induced enzymatic block is combined with reduced physiologic enzyme activity as seen in heterozygotes, the elevation of orotic acid could be used to differentiate heterozygotes from unaffected individuals. This test was not universally effective, as it had both false negative and false positive results.
Ornithine transcarbamylase is only expressed in the liver, thus performing an enzyme assay to confirm the diagnosis requires a liver biopsy. Before molecular genetic testing was commonly available, this was one of the only methods for confirmation of a suspected diagnosis. In cases where prenatal diagnosis was requested, a fetal liver biopsy used to be required to confirm if a fetus was affected. Modern molecular techniques have eliminated this need, and gene sequencing is now the preferred method of diagnosis in asymptomatic family members after the diagnosis has been confirmed in a proband.
Biotinidase deficiency can be found by genetic testing. This is often done at birth as part of newborn screening in several states throughout the United States. Results are found through testing a small amount of blood gathered through a heel prick of the infant. As not all states require that this test be done, it is often skipped in those where such testing is not required. Biotinidase deficiency can also be found by sequencing the "BTD" gene, particularly in those with a family history or known familial gene mutation.
A 1999 retrospective study of 74 cases of neonatal onset found that 32 (43%) patients died during their first hyperammonemic episode. Of those who survived, less than 20% survived to age 14. Few of these patients received liver transplants.
Upon clinical suspicion, diagnostic testing will often consist of measurement of amino acid concentrations in plasma, in search of a significantly elevated ornithine concentration. Measurement of urine amino acid concentrations is sometimes necessary, particularly in neonatal onset cases to identify the presence or absence of homocitrulline for ruling out ornithine translocase deficiency (hyperornithinemia, hyperammonemia, homocitrullinuria syndrome, HHH syndrome). Ornithine concentrations can be an unreliable indicator in the newborn period, thus newborn screening may not detect this condition, even if ornithine is included in the screening panel. Enzyme assays to measure the activity of ornithine aminotransferase can be performed from fibroblasts or lymphoblasts for confirmation or during the neonatal period when the results of biochemical testing is unclear. Molecular genetic testing is also an option.
Based on the results of worldwide screening of biotinidase deficiency in 1991, the incidence of the disorder is:
5 in 137,401 for profound biotinidase deficiency
- One in 109,921 for partial biotinidase deficiency
- One in 61,067 for the combined incidence of profound and partial biotinidase deficiency
- Carrier frequency in the general population is approximately one in 120.
Liver biopsy for microscopic analysis and enzyme assay is required for definitive diagnosis. Diagnosis may include linkage analysis in families with affected members and sequencing of the entire coding region of the GSY2 gene for mutations.
Diagnosis of Fatty-acid metabolism disorder requires extensive lab testing.
Normally, in cases of hypoglycaemia, triglycerides and fatty acids are metabolised to provide glucose/energy. However, in this process, ketones are also produced and ketotic hypoglycaemia is expected. However, in cases where fatty acid metabolism is impaired, a non-ketotic hypoglycaemia may be the result, due to a break in the metabolic pathways for fatty-acid metabolism.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
This condition is very rare; approximately 600 cases have been reported worldwide. In most parts of the world, only 1% to 2% of all infants with high phenylalanine levels have this disorder. In Taiwan, about 30% of newborns with elevated levels of phenylalanine have a deficiency of THB.
Serum glucose levels are measured to document the degree of hypoglycemia. Serum electrolytes calculate the anion gap to determine presence of metabolic acidosis; typically, patients with glycogen-storage disease type 0 (GSD-0) have an anion gap in the reference range and no acidosis. See the Anion Gap calculator.
Serum lipids (including triglyceride and total cholesterol) may be measured. In patients with glycogen-storage disease type 0, hyperlipidemia is absent or mild and proportional to the degree of fasting.
Urine (first voided specimen with dipstick test for ketones and reducing substances) may be analyzed. In patients with glycogen-storage disease type 0, urine ketones findings are positive, and urine-reducing substance findings are negative. However, urine-reducing substance findings are positive (fructosuria) in those with fructose 1-phosphate aldolase deficiency (fructose intolerance).
Serum lactate is in reference ranges in fasting patients with glycogen-storage disease type 0.
Liver function studies provide evidence of mild hepatocellular damage in patients with mild elevations of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.Plasma amino-acid analysis shows plasma alanine levels as in reference ranges during a fast.
Carnitor - an L-carnitine supplement that has shown to improve the body's metabolism in individuals with low L-carnitine levels. It is only useful for Specific fatty-acid metabolism disease.
A high-protein diet can overcome the deficient transport of neutral amino acids in most patients. Poor nutrition leads to more frequent and more severe attacks of the disease, which is otherwise asymptomatic. All patients who are symptomatic are advised to use physical and chemical protection from sunlight: avoid excessive exposure to sunlight, wear protective clothing, and use chemical sunscreens with a SPF of 15 or greater. Patients also should avoid other aggravating factors, such as photosensitizing drugs, as much as possible. In patients with niacin deficiency and symptomatic disease, daily supplementation with nicotinic acid or nicotinamide reduces both the number and severity of attacks. Neurologic and psychiatric treatment is needed in patients with severe central nervous system involvement.
Carnosinase in humans has two forms:
1. Cellular, or tissue carnosinase. This form of the enzyme is found in every bodily tissue. It is a dimer, and hydrolyzes both carnosine and anserine, preferring dipeptides that have a histidine monomer in the c-terminus position. Tissue carnosinase is often considered a "non-specific dipeptidase", based in part on its ability to hydrolyze a range of dipeptide substrates, including those belonging to prolinase.
2. Serum carnosinase. This is the carnosinase found in the blood plasma. Deficiency of this form of carnosinase, along with carnosinuria ("carnosine in the urine"), is the usual metabolic indicator of systemic carnosinase deficiency. Serum carnosinase is a glycoprotein, and splits free carnosine and anserine in the blood. This form of the dipeptidase is not found in human blood until late infancy, slowly rising to adult levels by age 15. Unlike tissue carnosinase, serum carnosinase also hydrolyzes the GABA metabolite homocarnosine. Homocarnosinosis, a neurological disorder resulting in an excess of homocarnosine in the brain, though unaffected by tissue carnosinase, is caused by a deficiency of serum carnosinase in its ability to hydrolyze homocarnosine.
A deficiency of tissue and serum carnosinase, with serum being an indicator, is the underlying metabolic cause of carnosinemia.
A triplex tetra-primer ARMS-PCR method was developed for the simultaneous detection of C677T and A1298C polymorphisms with the A66G MTRR polymorphism in a single PCR reaction.
Carnosinemia, also called carnosinase deficiency or aminoacyl-histidine dipeptidase deficiency, is a rare autosomal recessive metabolic disorder caused by a deficiency of "carnosinase", a dipeptidase (a type of enzyme that splits dipeptides into their two amino acid constituents).
Carnosine is a dipeptide composed of beta-alanine and histidine, and is found in skeletal muscle and cells of the nervous system. This disorder results in an excess of carnosine in the urine, cerebrospinal fluid (CSF), blood and nervous tissue. Neurological disorders associated with a deficiency of carnosinase, and the resulting carnosinemia ("carnosine in the blood") are common.
The usual initial investigations include chest X ray, electrocardiogram and echocardiography. Typical findings are those of an enlarged heart with non specific conduction defects. Biochemical investigations include serum creatine kinase (typically increased 10 fold) with lesser elevations of the serum aldolase, aspartate transaminase, alanine transaminase and lactic dehydrogenase. Diagnosis is made by estimating the acid alpha glucosidase activity in either skin biopsy (fibroblasts), muscle biopsy (muscle cells) or in white blood cells. The choice of sample depends on the facilities available at the diagnostic laboratory.
In the late onset form, the findings on investigation are similar to those of the infantile form with the caveat that the creatinine kinases may be normal in some cases. The diagnosis is by estimation of the enzyme activity in a suitable sample.
On May 17, 2013 the Secretary's Discretionary Advisory Committee on Heritable Diseases in Newborns and Children (DACHDNC) approved a recommendation to the Secretary of Health and Human Services to add Pompe to the Recommended Uniform Screening Panel (RUSP). The HHS secretary must first approve the recommendation before the disease is formally added to the panel.
D-Glyceric Acidemia should not be confused with L-Glyceric Acidemia (a.k.a. L-glyceric aciduria, a.k.a. primary hyperoxaluria type II ), which is associated with mutations in the "GRHPR" (encoding for the enzyme 'glyoxylate reductase/hydroxypyruvate reductase').
Severe MTHFR deficiency is rare (about 50 cases worldwide) and caused by mutations resulting in 0–20% residual enzyme activity. Patients exhibit developmental delay, motor and gait dysfunction, seizures, and neurological impairment and have extremely high levels of homocysteine in their plasma and urine as well as low to normal plasma methionine levels.
A study on the Chinese Uyghur population indicated that rs1801131 polymorphism in MTHFR was associated with nsCL/P in Chinese Uyghur population. Given the unique genetic and environmental characters of the Uyghur population, these findings may be helpful for exploring the pathogenesis of this complex disease.
Below is an example of how glutamate is used to synthesize alanine via alanine transaminase.
Another example is the conversion of aspartate to glutamate via the enzyme aspartate transaminase.
Copper deficiency is a very rare disease and is often misdiagnosed several times by physicians before concluding the deficiency of copper through differential diagnosis (copper serum test and bone marrow biopsy are usually conclusive in diagnosing copper deficiency). On average, patients are diagnosed with copper deficiency around 1.1 years after their first symptoms are reported to a physician.
Copper deficiency can be treated with either oral copper supplementation or intravenous copper. If zinc intoxication is present, discontinuation of zinc may be sufficient to restore copper levels back to normal, but this usually is a very slow process. People who suffer from zinc intoxication will usually have to take copper supplements in addition to ceasing zinc consumption. Hematological manifestations are often quickly restored back to normal. The progression of the neurological symptoms will be stopped by appropriate treatment, but often with residual neurological disability.
The characteristic hematological (blood) effects of copper deficiency are anemia (which may be microcytic, normocytic or macrocytic) and neutropenia. Thrombocytopenia (low blood platelets) is unusual.
The peripheral blood and bone marrow aspirate findings in copper deficiency can mimic myelodysplastic syndrome. Bone marrow aspirate in both conditions may show dysplasia of blood cell precursors and the presence of ring sideroblasts (erythroblasts containing multiple iron granules around the nucleus). Unlike most cases of myelodysplastic syndrome, the bone marrow aspirate in copper deficiency characteristically shows cytoplasmic vacuoles within red and white cell precursors, and karyotyping in cases of copper deficiency does not reveal cytogenetic features characteristic of myelodysplastic syndrome.
Anemia and neutropenia typically resolve within six weeks of copper replacement.
Dicarboxylic aminoaciduria is a rare form of aminoaciduria (1:35 000 births) which is an autosomal recessive disorder of urinary glutamate and aspartate due to genetic errors related to transport of these amino acids. Mutations resulting in a lack of expression of the "SLC1A1" gene, a member of the solute carrier family, are found to cause development of dicarboxylic aminoaciduria in humans. SLC1A1 encodes for EAAT3 which is found in the neurons, intestine, kidney, lung, and heart. EAAT3 is part of a family of high affinity glutamate transporters which transport both glutamate and aspartate across the plasma membrane.
The condition is diagnosed by blood tests in the laboratory when it is noted that special blood clotting test are abnormal. Specifically prothrombin time (PT) or activated partial thromboplastin time(aPTT) are prolonged. The diagnosis is confirmed by an assay detecting very low or absent FXII levels.
The FXII (F12) gene is found on chromosome 5q33-qter.
In hereditary angioedema type III an increased activity of factor XII has been described.
Among the diagnostic tests that can be done in determining if an individual has complement deficiencies is:
- CH50 measurement
- Immunochemical methods/test
- C3 deficiency screening
- Mannose-binding lectin (lab study)
- Plasma levels/regulatory proteins (lab study)
Hartnup disease (also known as "pellagra-like dermatosis" and "Hartnup disorder") is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids (particularly tryptophan that can be, in turn, converted into serotonin, melatonin, and niacin). Niacin is a precursor to nicotinamide, a necessary component of NAD+.
The causative gene, "SLC6A19", is located on chromosome 5.