Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis can be made solely on the basis of history and physical examination in people who present with only facial asymmetry. For those who report neurological symptoms such as migraine or seizures, MRI scan of the brain is the imaging modality of choice. A diagnostic lumbar puncture and serum test for autoantibodies may also be indicated in people who present with a seizure disorder of recent onset.
Norrie disease and other NDP related diseases are diagnosed with the combination of clinical findings and molecular genetic testing. Molecular genetic testing identifies the mutations that cause the disease in about 85% of affected males. Clinical diagnoses rely on ocular findings. Norrie disease is diagnosed when grayish-yellow fibrovascular masses are found behind the eye from birth through three months. Doctors also look for progression of the disease from three months through 8–10 years of age. Some of these progressions include cataracts, iris atrophy, shallowing of anterior chamber, and shrinking of the globe. By this point, people with the condition either have only light perception or no vision at all.
Molecular genetic testing is used for more than an initial diagnosis. It is used to confirm diagnostic testing, for carrier testing females, prenatal diagnosis, and preimplantation genetic diagnosis. There are three types of clinical molecular genetic testing. In approximately 85% of males, mis-sense and splice mutations of the NDP gene and partial or whole gene deletions are detected using sequence analysis. Deletion/duplication analysis can be used to detect the 15% of mutations that are submicroscopic deletions. This is also used when testing for carrier females. The last testing used is linkage analysis, which is used when the first two are unavailable. Linkage analysis is also recommended for those families who have more than one member affected by the disease.
On MRI the retinal dysplasia that occurs with the syndrome can be indistinguishable from persistent hyperplastic primary vitreous, or the dysplasia of trisomy 13 and Walker–Warburg syndrome.
Medical management may involve immunosuppressive drugs such as methotrexate, corticosteroids, cyclophosphamide, and azathioprine. No randomized controlled trials have yet been conducted to evaluate such treatments, so the benefits have not been clearly established.
Diagnosis of ARN is outlined by the American Uveitis Society. Though most diagnosis's of ARN are made by clinical features, a physician may take a vitreous sample and have it tested for herpes markers. Common lab tests that are run on the sample include a viral culture, viral PCR, direct/indirect immunofluorescence, viral antibody measurement.
The American Uveitis Society has established the following guidelines for ARN diagnosis:
1. Retinal necrosis with one or more focus points borders in the peripheral retina
2. In the absence of antiviral treatment, the condition progresses rapidly
3. Spreading to the surroundings
4. Buildup of blood vessels
5. Inflammation of the vitreous.
Lucio Godina (March 8, 1908 – November 24, 1936) and Simplicio Godina (March 8, 1908 - December 8, 1936) were pygopagus conjoined twins from the island of Samar in the Philippines.
At the age of 21 they married Natividad and Victorina Matos, who were identical twins. They performed in various sideshow acts, including in an orchestra on Coney Island and in dance with their wives.
After Lucio died of rheumatic fever in New York City, doctors operated to separate him from Simplicio. Simplicio survived the operation, but died shortly thereafter due to spinal meningitis.
The diagnosis of episcleritis is based upon the history and physical examination. The history should be explored for the presence of the diseases associated with episcleritis, and the symptoms they cause, such as rash, arthritis, venereal disease, and recent viral infection. Episcleritis may be differentiated from scleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis. A blue color to the sclera suggests scleritis, rather than episcleritis.
After anesthetizing the eye with medication, the conjunctiva may be moved with a cotton swab to observe the location of the enlarged blood vessels.
In a study done published by the British Journal of Ophthalmology, the cases of ARN/BARN reported in 2001-2002 in the UK, Varicella Zoster Virus was the most common culprit for the disease and presented mostly in men than in women.
Researchers have also looked at two cases of ARN in patients who have been diagnosed with an immunodeficiency virus. The disease presented itself more so in the outer retina until it progressed far enough to then affect the inner retina. The patients were not so responsive to the antiviral agents given to them through an IV, acyclovir specifically. The cases progressed to retinal detachment. The patients tested positive for the herpes virus. Researchers are now wondering if this type of ARN is specific to those who have the immunodeficiency virus.
Scleritis is best detected by examining the sclera in daylight; retracting the lids helps determine the extent of involvement. Other aspects of the eye exam (i.e. visual acuity testing, slit lamp examination, etc.) may be normal. Scleritis may be differentiated from episcleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis.
Ancillary tests CT scans, MRIs, and ultrasonographies can be helpful, but do not replace the physical examination.
Diagnosis includes dilated fundus examination to rule out posterior uveitis, which presents with white spots across the retina along with retinitis and vasculitis.
Laboratory testing is usually used to diagnose specific underlying diseases, including rheumatologic tests (e.g. antinuclear antibody, rheumatoid factor, angiotensin converting enzyme inhibitor <-- error) and serology for infectious diseases (Syphilis, Toxoplasmosis, Tuberculosis).
Major histocompatibility antigen testing may be performed to investigate genetic susceptibility to uveitis. The most common antigens include HLA-B27, HLA-A29 (in birdshot chorioretinopathy) and HLA-B51 (in Behçet disease).
Radiology X-ray may be used to show coexisting arthritis and chest X-ray may be helpful in sarcoidosis.
Genetic testing can confirm albinism and what variety it is, but offers no medical benefits except in the cases of non-OCA disorders that cause albinism "along with" other medical problems which may be treatable. There is no 'cure' for Albinism. The "symptoms" of albinism can be assisted by various methods.
Imaging studies such as ultrasonography (US), Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) can aid diagnosis. On ultrasound, Coats' disease appears as a hyperechoic mass in the posterior vitreous without posterior acoustic shadowing; vitreous and subretinal hemorrhage may often be observed.
On CT, the globe appears hyperdense compared to normal vitreous due to the proteinaceous exudate, which may obliterate the vitreous space in advanced disease. The anterior margin of the subretinal exudate enhances with contrast. Since the retina is fixed posteriorly at the optic disc, this enhancement has a V-shaped configuration.
On MRI, the subretinal exudate shows high signal intensity on both T1- and T2-weighted images. The exudate may appear heterogeneous if hemorrhage or fibrosis is present. The subretinal space does not enhance with gadolinium contrast. Mild to moderate linear enhancement may be seen between the exudate and the remaining vitreous. The exudate shows a large peak at 1-1.6 ppm on proton MR spectroscopy.
There is no known treatment for FTS, as the cause is not yet known. There are conflicting reports on whether the paralysis is reversible; some sources claim that moving an elephant away from the area in which it contracted the condition will allow it to recover, while others claim that damage to the trunk is irreversible.
In some extreme cases, wildlife managers have killed affected elephants for humane reasons.
There is no causative / curative therapy. Symptomatic medical treatments are focussing on symptoms caused by orthopaedic, dental or cardiac problems. Regarding perioperative / anesthesiological management, recommendations for medical professionals are published at OrphanAnesthesia.
Not smoking is a common suggestion in the literature. Apart from smoking cessation, there is little definitive research in this area. In addition to the selenium studies above, some recent research also is suggestive that statin use may assist.
Since the condition appears to slowly subside or diminish on its own, there are no specific treatments for this condition available.
Some precautions include regular visits to an ophthalmologist or optometrist and general testing of the pupil and internal eye through fundamental examinations (listed below). The examinations can determine if any of the muscles of the eye or retina, which is linked to the pupil, have any problems that could relate to the tadpole pupil condition.
Corneal and Retinal Topography: computerized tests that maps the surface of the retina, or the curvature of the cornea.
Fluorescein Angiogram: evaluation of blood circulation in the retina.
Dilated Pupillary Exam: special drops expand the pupil, which then allows doctors to examine the retina.
Slit-Lamp Exam: By shining a small beam of light in the eye, eye doctors can diagnose cataracts, glaucoma, retinal detachment, macular degeneration, injuries to the cornea, and dry eye disease.
Ultrasound: Provides a picture of the eye’s internal structure, and can evaluate ocular tumors, or the retina if its suffering from cataracts or hemorrhages.
Grossly, retinal detachment and yellowish subretinal exudate containing cholesterol crystals are commonly seen.
Microscopically, the wall of retinal vessels may be thickened in some cases, while in other cases the wall may be thinned with irregular dilatation of the lumen. The subretinal exudate consists of cholesterol crystals, macrophages laden with cholesterol and pigment, erythrocytes, and hemosiderin. A granulomatous reaction, induced by the exudate, may be seen with the retina. Portions of the retina may develop gliosis as a response to injury.
Scleritis can be classified as anterior scleritis and posterior scleritis. Anterior scleritis is the most common variety, accounting for about 98% of the cases. It is of two types : Non-necrotising and necrotising. Non-necrotising scleritis is the most common, and is further classified into diffuse and nodular type based on morphology. Necrotising scleritis accounts for 13% of the cases. It can occur with or without inflammation.
The prognosis is generally good for those who receive prompt diagnosis and treatment, but serious complication including cataracts, glaucoma, band keratopathy, macular edema and permanent vision loss may result if left untreated. The type of uveitis, as well as its severity, duration, and responsiveness to treatment or any associated illnesses, all factor into the outlook.
Episcleritis is a benign, self-limiting condition, meaning patients recover without any treatment. Most cases of episcleritis resolve within 7–10 days. The nodular type is more aggressive and takes longer to resolve. Although rare, some cases may progress to scleritis. However, in general, episcleritis does not cause complications in the eye. Smoking tobacco delays the response to treatment in patients with episcleritis.
MDM is most common on the Dalmatian island of Mljet (or "Meleda"), thought to be because of a founder effect. It is of autosomal recessive inheritance. It may be caused by a mutation on the "SLURP1" gene, located on chromosome 8.
Dry eyes can usually be diagnosed by the symptoms alone. Tests can determine both the quantity and the quality of the tears. A slit lamp examination can be performed to diagnose dry eyes and to document any damage to the eye.
A Schirmer's test can measure the amount of moisture bathing the eye. This test is useful for determining the severity of the condition. A five-minute Schirmer's test with and without anesthesia using a Whatman #41 filter paper 5 mm wide by 35 mm long is performed. For this test, wetting under 5 mm with or without anesthesia is considered diagnostic for dry eyes.
If the results for the Schirmer's test are abnormal, a Schirmer II test can be performed to measure reflex secretion. In this test, the nasal mucosa is irritated with a cotton-tipped applicator, after which tear production is measured with a Whatman #41 filter paper. For this test, wetting under 15 mm after five minutes is considered abnormal.
A tear breakup time (TBUT) test measures the time it takes for tears to break up in the eye. The tear breakup time can be determined after placing a drop of fluorescein in the cul-de-sac.
A tear protein analysis test measures the lysozyme contained within tears. In tears, lysozyme accounts for approximately 20 to 40 percent of total protein content.
A lactoferrin analysis test provides good correlation with other tests.
The presence of the recently described molecule Ap4A, naturally occurring in tears, is abnormally high in different states of ocular dryness. This molecule can be quantified biochemically simply by taking a tear sample with a plain Schirmer test. Utilizing this technique it is possible to determine the concentrations of Ap4A in the tears of patients and in such way diagnose objectively if the samples are indicative of dry eye.
The Tear Osmolarity Test has been proposed as a test for dry eye disease. Tear osmolarity may be a more sensitive method of diagnosing and grading the severity of dry eye compared to corneal and conjunctival staining, tear break-up time, Schirmer test, and meibomian gland grading. Others have recently questioned the utility of tear osmolarity in monitoring dry eye treatment.
Graves' ophthalmopathy is diagnosed clinically by the presenting ocular signs and symptoms, but positive tests for antibodies (anti-thyroglobulin, anti-microsomal and anti-thyrotropin receptor) and abnormalities in thyroid hormones level (T3, T4, and TSH) help in supporting the diagnosis.
Orbital imaging is an interesting tool for the diagnosis of Graves' ophthalmopathy and is useful in monitoring patients for progression of the disease. It is, however, not warranted when the diagnosis can be established clinically. Ultrasonography may detect early Graves' orbitopathy in patients without clinical orbital findings. It is less reliable than the CT scan and magnetic resonance imaging (MRI), however, to assess the extraocular muscle involvement at the orbital apex, which may lead to blindness. Thus, CT scan or MRI is necessary when optic nerve involvement is suspected. On neuroimaging, the most characteristic findings are thick extraocular muscles with tendon sparing, usually bilateral, and proptosis.
There are a number of different treatments to deal with TSPK. Symptoms may disappear if untreated, but treatment may decrease both the healing time and the chances of remission.
- PRK laser eye surgery may cure this disease (NOTE: A full clinical study has not been done, but a case study of one person was reported in 2002 PRK-pTK as a treatment).
- Artificial tear eye-drops or ointments may be a suitable treatment for mild cases.
- Low-dosage steroidal eye-drops, such as prednisone, fluorometholone, loteprednol (Lotemax 0.5%) or rimexolone. Steroidal drops should be used with caution and the eye pressure should be regularly checked during treatment.
- Soft contact lenses.
- Ciclosporin is an experimental treatment for TSPK. It is usually used during transplants as it reduces the immune system response.
- Tacrolimus (Protopic 0.03% ointment) is also an experimental treatment.
- Laser eye treatment.
- Amniotic membrane (Case Study)
Diagnosis is clinical, seeking a history of eye injury. An important differential diagnosis is Vogt-Koyanagi-Harada syndrome (VKH), which is thought to have the same pathogenesis, without a history of surgery or penetrating eye injury.
Still experimental, skin tests with soluble extracts of human or bovine uveal tissue are said to elicit delayed hypersensitivity responses in these patients. Additionally, circulating antibodies to uveal antigens have been found in patients with SO and VKH, as well as those with long-standing uveitis, making this a less than specific assay for SO and VKH.