Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is not practical to test or decontaminate most sites that may be contaminated with "H. capsulatum", but the following sources list environments where histoplasmosis is common, and precautions to reduce a person's risk of exposure, in the three parts of the world where the disease is prevalent. Precautions common to all geographical locations would be to avoid accumulations of bird or bat droppings.
The US National Institute for Occupational Safety and Health (NIOSH) provides information on work practices and personal protective equipment that may reduce the risk of infection. This document is available in English and Spanish.
Authors at the University of Nigeria have published a review which includes information on locations in which histoplasmosis has been found in Africa (in chicken runs, bats and the caves bats infest, and in soil), and a thorough reference list including English, French, and Spanish language references.
Clinically, there is a wide spectrum of disease manifestation, making diagnosis somewhat difficult. More severe forms include: (1) the chronic pulmonary form, often occurring in the presence of underlying pulmonary disease; and (2) a disseminated form, which is characterized by the progressive spread of infection to extra-pulmonary sites. Oral manifestations have been reported as the main complaint of the disseminated forms, leading the patient to seek treatment, whereas pulmonary symptoms in disseminated disease may be mild or even misinterpreted as flu. Histoplasmosis can be diagnosed by samples containing the fungus taken from sputum (via bronchoalveolar lavage), blood, or infected organs. It can also be diagnosed by detection of antigens in blood or urine samples by ELISA or PCR. Antigens can cross-react with antigens of African histoplasmosis (caused by Histoplasma duboisii), blastomycosis, coccidioidomycosis, paracoccidioidomycosis, and Penicillium marneffei infection. Histoplasmosis can also be diagnosed by a test for antibodies against "Histoplasma" in the blood. "Histoplasma" skin tests indicate whether a person has been exposed, but do not indicate whether they have the disease. Formal histoplasmosis diagnoses are often confirmed only by culturing the fungus directly. Sabouraud agar is one type of agar growth media on which the fungus can be cultured. Cutaneous manifestations of disseminated disease are diverse and often present as a nondescript rash with systemic complaints. Diagnosis is best established by urine antigen testing, as blood cultures may take up to 6 weeks for diagnostic growth to occur and serum antigen testing often comes back with a false negative before 4 weeks of disseminated infection.
Diagnosis is often made by visualization of yeast cells in tissue, or superficial scrapings. Radiography of the chest reveals interstitial infiltrates in the majority of cases.
If suspected, fungal meningitis is diagnosed by testing blood and CSF samples for pathogens. Identifying the specific pathogen is necessary to determine the proper course of treatment and the prognosis. Measurement of opening pressure, cell count with differential, glucose and protein concentrations, Gram's stain, India ink, and culture tests should be preformed on CSF samples when fungal meningitis is suspected.
Presumptive diagnosis is made by characteristic clinical signs, post mortem lesions, and presence of competent vectors. Laboratory confirmation is by viral isolation, with such techniques as quantitative PCR for detecting viral RNA, antigen capture (ELISA), and immunofluorescence of infected tissues. Serological tests are only useful for detecting recovered animals, as sick animals die before they are able to mount effective immune responses.
African histoplasmosis is an infection caused by "Histoplasma duboisii". Disease has been most often reported in Uganda, Nigeria, Zaire and Senegal. In human disease it manifests differently than histoplasmosis (caused by "Histoplasma capsulatum"), most often involving the skin and bones and rarely involving the lungs.
Sulfonamides are the traditional remedies to paracoccidiodomycosis. They were introduced by Oliveira Ribeiro and used for more than 50 years with good results. The most-used sulfa drugs in this infection are sulfadimethoxime, sulfadiazine, and co-trimoxazole. This treatment is generally safe, but several adverse effects can appear, the most severe of which are the Stevens-Johnson syndrome and agranulocytosis. Similarly to tuberculosis treatment, it must be continued for up to three years to eradicate the fungus, and relapse and treatment failures are not unusual.
Antifungal drugs such as amphotericin B or itraconazole and ketoconazole are more effective in clearing the infection, but are limited by their cost when compared with sulfonamides.During therapy, fibrosis can appear and surgery may be needed to correct this. Another possible complication is Addisonian crisis. The mortality rate in children is around 7-10%.
The use of trypanotolerant breeds for livestock farming should be considered if the disease is widespread.
Fly control is another option but is difficult to implement.
The main approaches to controlling African trypanosomiasis are to reduce the reservoirs of infection and the presence of the tsetse fly. Screening of people at risk helps identify patients at an early stage. Diagnosis should be made as early as possible and before the advanced stage to avoid complicated, difficult and risky treatment procedures.
Prognosis depends on the pathogen responsible for the infection and risk group. Overall mortality for "Candida" meningitis is 10-20%, 31% for patients with HIV, and 11% in neurosurgical cases (when treated). Prognosis for "Aspergillus" and coccidioidal infections is poor.
They are treated with antiprotozoal agents. Recent papers have also proposed the use of viruses to treat infections caused by protozoa.
Progressive disseminated histoplasmosis is an infection caused by Histoplasma capsulatum, and most people who develop this severe form of histoplasmosis are immunocompromised or taking systemic corticosteroids. Skin lesions are present in approximately 6% of patients with dissemination.
Trypanosomiasis could, in future be prevented by genetically altering the tsetse fly. As the tsetse fly is the main vector of transmission, making the fly immune to the disease by altering its genome could be the main component in an effort to eradicate the disease. New technologies such as CRISPR allowing cheaper and easier genetic engineering could allow for such measures.
There is currently no treatment for AHS.
Control of an outbreak in an endemic region involves quarantine, vector control and vaccination. To prevent this disease, the affected horses are usually slaughtered, and the uninfected horses are vaccinated against the virus. Three vaccines currently exist, which include a polyvalent vaccine, a monovalent vaccine, and a monovalent inactivated vaccine. This disease can also be prevented by destroying the insect vector habitats using insecticides.
Biopsies or cultures of a person's tick wound (eschar) are used to diagnose ATBF. However, this requires special culture media and can only be done by a laboratory with biohazard protection. There are more specialized laboratory tests available that use quantitative polymerase chain reactions (qPCR), but can only be done by laboratories with special equipment. Immunofluorescence assays can also be used, but are hard to interpret because of cross-reactions with other rickettsiae bacteria.
The term Winterbottom's sign derives from descriptions of the posterior cervical lymphadenopathy associated with African trypanosomiasis made by a slave trader using the sign to weed out the ill.
The gold standard for diagnosis is identification of trypanosomes in a patient sample by microscopic examination. Patient samples that can be used for diagnosis include chancre fluid, lymph node aspirates, blood, bone marrow, and, during the neurological stage, cerebrospinal fluid. Detection of trypanosome-specific antibodies can be used for diagnosis, but the sensitivity and specificity of these methods are too variable to be used alone for clinical diagnosis. Further, seroconversion occurs after the onset of clinical symptoms during a "T. b. rhodesiense" infection, so is of limited diagnostic use.
Trypanosomes can be detected from patient samples using two different preparations. A wet preparation can be used to look for the motile trypanosomes. Alternatively, a fixed (dried) smear can be stained using Giemsa's or Field's technique and examined under a microscope. Often, the parasite is in relatively low abundance in the sample, so techniques to concentrate the parasites can be used prior to microscopic examination. For blood samples, these include centrifugation followed by examination of the buffy coat; mini anion-exchange/centrifugation; and the quantitative buffy coat (QBC) technique. For other samples, such as spinal fluid, concentration techniques include centrifugation followed by examination of the sediment.
Three serological tests are also available for detection of the parasite: the micro-CATT, wb-CATT, and wb-LATEX. The first uses dried blood, while the other two use whole blood samples. A 2002 study found the wb-CATT to be the most efficient for diagnosis, while the wb-LATEX is a better exam for situations where greater sensitivity is required.
Diagnosis of ATBF is mostly based on symptoms, as many laboratory tests are not specific for ATBF. Common laboratory test signs of ATBF are a low white blood cell count (lymphopenia) and low platelet count (thrombocytopenia), a high C-reactive protein, and mildly high liver function tests.
Winterbottom's sign is seen in the early phase of African trypanosomiasis, a disease caused by the parasites "Trypanosoma brucei rhodesiense" and "Trypanosoma brucei gambiense" which is more commonly known as African sleeping sickness. Dr. Anthony Martinelli describes Winterbottom's sign as the swelling of lymph nodes (lymphadenopathy) along the back of the neck, in the posterior cervical chain of lymph nodes, as trypanosomes travel in the lymphatic fluid and cause inflammation.
It may be suggestive of cerebral infection.
Protozoan infections are parasitic diseases caused by organisms formerly classified in the Kingdom Protozoa. They include organisms classified in Amoebozoa, Excavata, and Chromalveolata.
Examples include "Entamoeba histolytica", "Plasmodium" (some of which cause malaria), and "Giardia lamblia". "Trypanosoma brucei", transmitted by the tsetse fly and the cause of African sleeping sickness, is another example.
The species traditionally collectively termed "protozoa" are not closely related to each other, and have only superficial similarities (eukaryotic, unicellular, motile, though with exceptions). The terms "protozoa" (and protist) are usually discouraged in the modern biosciences. However, this terminology is still encountered in medicine. This is partially because of the conservative character of medical classification, and partially due to the necessity of making identifications of organisms based upon appearances and not upon DNA.
Protozoan infections in animals may be caused by organisms in the sub-class Coccidia (disease: Coccidiosis) and species in the genus "Besnoitia" (disease: Besnoitiosis).
Several pathogenic protozoans appear to be capable of sexual processes involving meiosis (or at least a modified form of meiosis). Included among these protozoans are "Plasmodium falciparum" (malaria), "Toxoplasma gondii" (toxoplasmosis), "Leishmania" species (leishmaniases), "Trypanosoma brucei" (African sleeping sickness), "Trypanosoma cruzi" (Chagas disease) and "Giardia intestinalis" (giardiasis).
If the outbreak is detected early, the organism can be destroyed by quarantines, movement controls, and maybe even put infected animals under euthanasia medication. Tsetse fly populations can be reduced or eliminated by traps, insecticides, and by treating infected animals with antiparasitic drugs. The Tse Tse habitat can be destroyed by alteration of vegetation so they can no longer live there.There are some drugs available that can prevent trypanosomiasis called prophylactic drugs.These drugs are very effective to protect animals during the times they are exposed to challenged diseases. Since they have been around for so long, some were not properly used which caused resistance to these drugs in some places.
The incubation period ranges from 4 days to approximately 8 weeks. The infection leads to significant weight loss and anaemia. Various symptoms are observed, including fever, oedema, adenitis, dermatitis and nervous disorders. The disease cannot be diagnosed with certainty except physically detecting parasites by blood microscopic examination or various serological reactions.
Currently there are few medically related prevention options for African Trypanosomiasis (i.e. no vaccine exists for immunity). Although the risk of infection from a tsetse fly bite is minor (estimated at less than 0.1%), the use of insect repellants, wearing long-sleeved clothing, avoiding tsetse-dense areas, implementing bush clearance methods and wild game culling are the best options to avoid infection available for local residents of affected areas.
At the 25th ISCTRC (International Scientific Council for Trypanosomiasis Research and Control) in Mombasa, Kenya, in October 1999, the idea of an African-wide initiative to control tsetse and trypanosomiasis populations was discussed. During the 36th summit of the Organization for African Unity in Lome, Togo, in July 2000, a resolution was passed to form the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC). The campaign works to eradicate the tsetse vector population levels and subsequently the protozoan disease, by use of insecticide-impregnated targets, fly traps, insecticide-treated cattle, ultra-low dose aerial/ground spraying (SAT) of tsetse resting sites and the sterile insect technique (SIT). The use of SIT in Zanzibar proved effective in eliminating the entire population of tsetse flies but was expensive and is relatively impractical to use in many of the endemic countries afflicted with African trypanosomiasis.
Regular active surveillance, involving detection and prompt treatment of new infections, and tsetse fly control is the backbone of the strategy used to control sleeping sickness. Systematic screening of at-risk communities is the best approach, because case-by-case screening is not practical in endemic regions. Systematic screening may be in the form of mobile clinics or fixed screening centres where teams travel daily to areas of high infection rates. Such screening efforts are important because early symptoms are not evident or serious enough to warrant patients with gambiense disease to seek medical attention, particularly in very remote areas. Also, diagnosis of the disease is difficult and health workers may not associate such general symptoms with trypanosomiasis. Systematic screening allows early-stage disease to be detected and treated before the disease progresses, and removes the potential human reservoir. A single case of sexual transmission of West African sleeping sickness has been reported.
Blood tests to detect antibodies against KSHV have been developed and can be used to determine whether a person is at risk for transmitting infection to their sexual partner, or whether an organ is infected prior to transplantation. However, these tests are not available except as research tools, and, thus, there is little screening for persons at risk for becoming infected with KSHV, such as people following a transplant.
On post-mortem examination (necropsy), the most obvious gross lesion is subcutaneous oedema in the submandibular and pectoral (brisket) regions. Petechial haemorrhages are found subcutaneously and in the thoracic cavity. In addition, congestion and various degrees of consolidation of the lung may occur. Animals that die within 24–36 hours, have only few petechial haemorrhages on the heart and generalised congestion of the lung, while in animals that die after 72 hours, petechial and ecchymotic haemorrhages were more evident and lung consolidation are more extensive.
Although KS may be suspected from the appearance of lesions and the patient's risk factors, definite diagnosis can be made only by biopsy and microscopic examination. Detection of the KSHV protein LANA in tumor cells confirms the diagnosis.
In differential diagnosis, arteriovenous malformations, pyogenic granuloma and other vascular proliferations can be microscopically confused with KS.