Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Microscopic demonstration of the large typically shaped oocysts is the basis for diagnosis. Because the oocysts may be passed in small amounts and intermittently, repeated stool examinations and concentration procedures are recommended. If stool examinations are negative, examination of duodenal specimens by biopsy or string test (Enterotest) may be needed. The oocysts can be visualized on wet mounts by microscopy with bright-field, differential interference contrast (DIC), and epifluorescence. They can also be stained by modified acid-fast stain.
Typical laboratory analyses include:
- Microscopy
- Morphologic comparison with other intestinal parasites
- Bench aids for "Isospora"
With colonoscopy it is possible to detect small ulcers of between 3–5mm, but diagnosis may be difficult as the mucous membrane between these areas can look either healthy or inflamed.
Asymptomatic human infections are usually diagnosed by finding cysts shed in the stool. Various flotation or sedimentation procedures have been developed to recover the cysts from fecal matter and stains help to visualize the isolated cysts for microscopic examination. Since cysts are not shed constantly, a minimum of three stools are examined. In symptomatic infections, the motile form (the trophozoite) is often seen in fresh feces. Serological tests exist, and most infected individuals (with symptoms or not) test positive for the presence of antibodies. The levels of antibody are much higher in individuals with liver abscesses. Serology only becomes positive about two weeks after infection. More recent developments include a kit that detects the presence of amoeba proteins in the feces, and another that detects ameba DNA in feces. These tests are not in widespread use due to their expense.
Microscopy is still by far the most widespread method of diagnosis around the world. However it is not as sensitive or accurate in diagnosis as the other tests available. It is important to distinguish the "E. histolytica" cyst from the cysts of nonpathogenic intestinal protozoa such as "Entamoeba coli" by its appearance. "E. histolytica" cysts have a maximum of four nuclei, while the commensal "Entamoeba coli" cyst has up to 8 nuclei. Additionally, in "E. histolytica," the endosome is centrally located in the nucleus, while it is usually off-center in "Entamoeba coli." Finally, chromatoidal bodies in "E. histolytica" cysts are rounded, while they are jagged in "Entamoeba coli". However, other species, "Entamoeba dispar" and "E. moshkovskii", are also commensals and cannot be distinguished from "E. histolytica" under the microscope. As "E. dispar" is much more common than "E. histolytica" in most parts of the world this means that there is a lot of incorrect diagnosis of "E. histolytica" infection taking place. The WHO recommends that infections diagnosed by microscopy alone should not be treated if they are asymptomatic and there is no other reason to suspect that the infection is actually "E. histolytica". Detection of cysts or trophozoites stools under microscope may require examination of several samples over several days to determine if they are present, because cysts are shed intermittently and may not show up in every sample.
Typically, the organism can no longer be found in the feces once the disease goes extra-intestinal. Serological tests are useful in detecting infection by "E. histolytica" if the organism goes extra-intestinal and in excluding the organism from the diagnosis of other disorders. An Ova & Parasite (O&P) test or an "E. histolytica" fecal antigen assay is the proper assay for intestinal infections. Since antibodies may persist for years after clinical cure, a positive serological result may not necessarily indicate an active infection. A negative serological result however can be equally important in excluding suspected tissue invasion by "E. histolytica".
The diagnosis of bacterial overgrowth can be made by physicians in various ways. Malabsorption can be detected by a test called the "D-xylose" test. Xylose is a sugar that does not require enzymes to be digested. The D-xylose test involves having a patient drink a certain quantity of D-xylose, and measuring levels in the urine and blood; if there is no evidence of D-xylose in the urine and blood, it suggests that the small bowel is not absorbing properly (as opposed to problems with enzymes required for digestion).
The gold standard for detection of bacterial overgrowth is the aspiration of more than 10 bacteria per millilitre from the small bowel. The normal small bowel has less than 10 bacteria per millilitre. Some experts however, consider aspiration of more than 10 positive if the flora is predominately colonic type bacteria as these types of bacteria are considered pathological in excessive numbers in the small intestine. The reliability of aspiration in the diagnosis of SIBO has been questioned as SIBO can be patchy and the reproducibility can be as low as 38 percent. Breath tests have their own reliability problems with a high rate of false positive. Some doctors factor in a patients' response to treatment as part of the diagnosis.
Breath tests have been developed to test for bacterial overgrowth, based on bacterial metabolism of carbohydrates to hydrogen and/or methane, or based on the detection of by-products of digestion of carbohydrates that are not usually metabolized. The hydrogen breath test involves having the patient fast for a minimum of 12 hours then having them drink a substrate usually glucose or lactulose, then measuring expired hydrogen and methane concentrations typically over a period of 2–3 hours. It compares well to jejunal aspirates in making the diagnosis of bacterial overgrowth. C and C based tests have also been developed based on the bacterial metabolism of D-xylose. Increased bacterial concentrations are also involved in the deconjugation of bile acids. The glycocholic acid breath test involves the administration of the bile acid C glychocholic acid, and the detection of CO, which would be elevated in bacterial overgrowth.
Some patients with symptoms of bacterial overgrowth will undergo gastroscopy, or visualization of the stomach and duodenum with an endoscopic camera. Biopsies of the small bowel in bacterial overgrowth can mimic those of celiac disease, making the diagnosis more challenging. Findings include blunting of villi, hyperplasia of crypts and an increased number of lymphocytes in the lamina propria.
However, some physicians suggest that if the suspicion of bacterial overgrowth is high enough, the best diagnostic test is a trial of treatment. If the symptoms improve, an empiric diagnosis of bacterial overgrowth can be made.
In the majority of cases, amoebas remain in the gastrointestinal tract of the hosts. Severe ulceration of the gastrointestinal mucosal surfaces occurs in less than 16% of cases. In fewer cases, the parasite invades the soft tissues, most commonly the liver. Only rarely are masses formed (amoebomas) that lead to intestinal obstruction.(Mistaken for Ca caecum and appendicular mass) Other local complications include bloody diarrhea, pericolic and pericaecal abscess.
Complications of hepatic amoebiasis includes subdiaphragmatic abscess, perforation of diaphragm to pericardium and pleural cavity, perforation to abdominal cavital "(amoebic peritonitis)" and perforation of skin "(amoebiasis cutis)".
Pulmonary amoebiasis can occur from hepatic lesion by haemotagenous spread and also by perforation of pleural cavity and lung. It can cause lung abscess, pulmono pleural fistula, empyema lung and broncho pleural fistula. It can also reach the brain through blood vessels and cause amoebic brain abscess and amoebic meningoencephalitis. Cutaneous amoebiasis can also occur in skin around sites of colostomy wound, perianal region, region overlying visceral lesion and at the site of drainage of liver abscess.
Urogenital tract amoebiasis derived from intestinal lesion can cause amoebic vulvovaginitis "(May's disease)", rectovesicle fistula and rectovaginal fistula.
"Entamoeba histolytica" infection is associated with malnutrition and stunting of growth.
Some studies reported up to 80% of patients with irritable bowel syndrome (IBS) have SIBO (using the hydrogen breath test). Subsequent studies demonstrated statistically significant reduction in IBS symptoms following therapy for SIBO.
There is a lack of consensus however, regarding the suggested link between IBS and SIBO. Other authors concluded that the abnormal breath results so common in IBS patients do not suggest SIBO, and state that "abnormal fermentation timing and dynamics of the breath test findings support a role for abnormal intestinal bacterial distribution in IBS." There is general consensus that breath tests are abnormal in IBS; however, the disagreement lies in whether this is representative of SIBO. More research is needed to clarifiy this possible link.
Cultures of stool samples are examined to identify the organism causing dysentery. Usually, several samples must be obtained due to the number of amoebae, which changes daily. Blood tests can be used to measure abnormalities in the levels of essential minerals and salts.
A clinical diagnosis may be made by taking a history and doing a brief examination. Treatment is usually started without or before confirmation by laboratory analysis.
Diagnosis may be simple in cases where the patient's signs and symptoms are idiopathic to a specific cause. However this is generally not the case, considering that many pathogens which cause enteritis may exhibit the similar symptoms, especially early in the disease. In particular, "campylobacter, shigella, salmonella" and many other bacteria induce acute self-limited colitis, an inflammation of the lining of the colon which appears similar under the microscope.
A medical history, physical examination and tests such as blood counts, stool cultures, CT scans, MRIs, PCRs, colonoscopies and upper endoscopies may be used in order to perform a differential diagnosis. A biopsy may be required to obtain a sample for histopathology.
One study suggests that on very long trips in the wilderness, taking multivitamins may reduce the incidence of diarrhea.
Avoiding food or water that may be contaminated with stool can help prevent the infection of "Cystoisospora" (Isosporiasis). Good hand-washing, and personal-hygiene practices should be used as well. One should wash their hands with soap and warm water after using the toilet, changing diapers, and before handling food (CDC.gov). It is also important to teach children the importance of washing their hands, and how to properly wash their hands.
Enteroinvasive "Escherichia coli" (EIEC) is a type of pathogenic bacteria whose infection causes a syndrome that is identical to shigellosis, with profuse diarrhea and high fever. EIEC are highly invasive, and they use adhesin proteins to bind to and enter intestinal cells. They produce no toxins, but severely damage the intestinal wall through mechanical cell destruction.
It is closely related to "Shigella".
After the "E. coli" strain penetrates through the epithelial wall, the endocytosis vacuole gets lysed, the strain multiplies using the host cell machinery, and extends to the adjacent epithelial cell. In addition, the plasmid of the strain carries genes for a type III secretion system that is used as the virulent factor. Although it is an invasive disease, the invasion usually does not pass the submucosal layer. The similar pathology to shigellosis may be because both strains of bacteria share some virulent factors. The invasion of the cells can trigger a mild form of diarrhea or dysentery, often mistaken for dysentery caused by "Shigella" species. The illness is characterized by the appearance of blood and mucus in the stools of infected individuals or a condition called colitis.
Dysentery caused by EIEC usually occurs within 12 to 72 hours following the ingestion of contaminated food. The illness is characterized by abdominal cramps, diarrhea, vomiting, fever, chills, and a generalized malaise. Dysentery caused by this organism is generally self-limiting with no known complications.
Enterovirulent classes of "E. coli" are referred to as the EEC group (enterovirulent "E. coli"):
1. Enteroinvasive "E. coli" (EIEC) invades (passes into) the intestinal wall to produce severe diarrhea.
2. Enterohemorrhagic "E. coli" (EHEC): A type of EHEC, "E. coli" 0157:H7, can cause bloody diarrhea and hemolytic uremic syndrome (anemia and kidney failure).
3. Enterotoxigenic "E. coli" (ETEC) produces a toxin that acts on the intestinal lining, and is the most common cause of traveler's diarrhea.
4. Enteropathogenic "E. coli" (EPEC) can cause diarrhea outbreaks in newborn nurseries.
5. Enteroaggregative "E. coli" (EAggEC) can cause acute and chronic (long-lasting) diarrhea in children.
It is currently unknown what foods may harbor EIEC, but any food contaminated with human feces from an ill individual, either directly or via contaminated water, could cause disease in others. Outbreaks have been associated with hamburger meat and unpasteurized milk.
It may be difficult to associate a particular case of diarrhea with a recent wilderness trip of a few days because incubation of the disease may outlast the trip. Studies of trips that are much longer than the average incubation period, e.g. a week for "Cryptosporidium" and "Giardia", are less susceptible to these errors since there is enough time for the diarrhea to occur during the trip. Other bacterial and viral agents have shorter incubation periods, although hepatitis may require weeks.
A suspected case of wilderness-acquired diarrhea may be assessed within the general context of intestinal complaints. During any given four-week period, as many as 7.2% of Americans may experience some form of infectious or non-infectious diarrhea. There are an estimated 99 million annual cases of intestinal infectious disease in the United States, most commonly from viruses, followed by bacteria and parasites, including Giardia and Cryptosporidium. There are an estimated 1.2 million U.S. cases of symptomatic giardiasis annually. However, only about 40% of cases are symptomatic.
For the purpose of setting treatment standards and reuse legislation, it is important to be able to determine the amount of helminth eggs in an environmental sample with some accuracy. The detection of viable helminth eggs in samples of wastewater, sludge or fresh feces (as a diagnostic tool for the infection helminthiasis) is not straight forward. In fact, many laboratories in developing countries lack the right equipment or skilled staff required to do so. An important step in the analytical methods is usually the concentration of the eggs in the sample, especially in the case of wastewater samples. A concentration step may not be required in samples of dried feces, e.g. samples collected from urine-diverting dry toilets.
For medical purposes, the exact number of helminth eggs is less important and therefore most diagnoses are made simply by identifying the appearance of the worm or eggs in feces. Due to the large quantity of eggs laid, physicians can diagnose using only one or two fecal smears. The Kato technique (also called the Kato-Katz technique) is a laboratory method for preparing human stool samples prior to searching for parasite eggs. Eggs per gram is a laboratory test that determines the number of eggs per gram of feces in patients suspected of having a parasitological infection, such as schistosomiasis.
Recommendations include avoidance of questionable foods and drinks, on the assumption that TD is fundamentally a sanitation failure, leading to bacterial contamination of drinking water and food. While the effectiveness of this strategy has been questioned, given that travelers have little or no control over sanitation in hotels and restaurants, and little evidence supports the contention that food vigilance reduces the risk of contracting TD, guidelines continue to recommend basic, common-sense precautions when making food and beverage choices:
- Maintain good hygiene and use only safe water for drinking and brushing teeth.
- Safe beverages include bottled water, bottled carbonated beverages, and water boiled or appropriately treated by the traveler (as described below). Caution should be exercised with tea, coffee, and other hot beverages that may be only heated, not boiled.
- In restaurants, insist that bottled water be unsealed in your presence; reports of locals filling empty bottles with untreated tap water and reselling them as purified water have surfaced. When in doubt, a bottled carbonated beverage is the safest choice, since it is difficult to simulate carbonation when refilling a used bottle.
- Avoid ice, which may not have been made with safe water.
- Avoid green salads, because the lettuce and other uncooked ingredients are unlikely to have been washed with safe water.
- Avoid eating raw fruits and vegetables unless cleaned and peeled personally.
If handled properly, thoroughly cooked fresh and packaged foods are usually safe. Raw or undercooked meat and seafood should be avoided. Unpasteurized milk, dairy products, mayonnaise, and pastry icing are associated with increased risk for TD, as are foods and beverages purchased from street vendors and other establishments where unhygienic conditions may be present.
Treatment for colitis-X usually does not save the horse. The prognosis is average to poor, and mortality is 90% to 100%. However, treatments are available, and one famous horse that survived colitis-X was U.S. Triple Crown winner Seattle Slew, that survived colitis-X in 1978 and went on to race as a four-year-old.
Large amounts of intravenous fluids are needed to counter the severe dehydration, and electrolyte replacement is often necessary. Flunixin meglumine (Banamine) may help block the effects of toxemia. Mortality rate has been theorized to fall to 75% if treatment is prompt and aggressive, including administration of not only fluids and electrolytes, but also blood plasma, anti-inflammatory and analgesic drugs, and antibiotics. Preventing dehydration is extremely important. Nutrition is also important. Either parenteral or normal feeding can be used to support the stressed metabolism of the sick horse. Finally, the use of probiotics is considered beneficial in the restoration of the normal intestinal flora. The probiotics most often used for this purpose contain "Lactobacillus" and "Bifidobacterium".
The CDC recommends hand-washing and avoiding potentially contaminated food and untreated water.
Boiling suspect water for one minute is the surest method to make water safe to drink and kill disease-causing microorganisms such as "Giardia lamblia" if in doubt about whether water is infected. Chemical disinfectants or filters may be used.
According to a review of the literature from 2000, there is little evidence linking the drinking of water in the North American wilderness and Giardia. CDC surveillance data (for 2005 and 2006) reports one outbreak (6 cases) of waterborne giardiasis contracted from drinking wilderness river water in Colorado. However, less than 1% of reported giardiasis cases are associated with outbreaks.
Person-to-person transmission accounts for the majority of "Giardia" infections and is usually associated with poor hygiene and sanitation. "Giardia" is found on the surface of the ground, in the soil, in undercooked foods, and in water, and on hands without proper cleaning after handling infected feces. Water-borne transmission is associated with the ingestion of contaminated water. In the U.S., outbreaks typically occur in small water systems using inadequately treated surface water. Venereal transmission happens through fecal-oral contamination. Additionally, diaper changing and inadequate hand washing are risk factors for transmission from infected children. Lastly, food-borne epidemics of "Giardia" have developed through the contamination of food by infected food-handlers.
Due to the wide variety of intestinal parasites, a description of the symptoms rarely is sufficient for diagnosis. Instead, medical personnel use one of two common tests: they search stool samples for the parasites, or apply an adhesive the anus to search for eggs.
Mild cases usually do not require treatment and will go away after a few days in healthy people. In cases where symptoms persist or when it is more severe, specific treatments based on the initial cause may be required.
In cases where diarrhoea is present, replenishing fluids lost is recommended, and in cases with prolonged or severe diarrhoea which persists, intravenous rehydration therapy or antibiotics may be required. A simple oral rehydration therapy (ORS) can be made by dissolving one teaspoon of salt, eight teaspoons of sugar and the juice of an orange into one litre of clean water. Studies have shown the efficacy of antibiotics in reducing the duration of the symptoms of infectious enteritis of bacterial origin, however antibiotic treatments are usually not required due to the self-limiting duration of infectious enteritis.
Major groups of parasites include protozoans (organisms having only one cell) and parasitic worms (helminths). Of these, protozoans, including cryptosporidium, microsporidia, and isospora, are most common in HIV-infected persons. Each of these parasites can infect the digestive tract, and sometimes two or more can cause infection at the same time.
Although safe bottled water is now widely available in most remote destinations, travelers can treat their own water if necessary, or as an extra precaution.
Techniques include boiling, filtering, chemical treatment, and ultraviolet light; boiling is by far the most effective of these methods. Boiling rapidly kills all active bacteria, viruses, and protozoa. Prolonged boiling is usually unnecessary; most microorganisms are killed within seconds at water temperature above 55–70 °C (130–160 °F). The second-most effective method is to combine filtration and chemical disinfection. Filters eliminate most bacteria and protozoa, but not viruses. Chemical treatment with halogens—chlorine bleach, tincture of iodine, or commercial tablets--have low-to-moderate effectiveness against protozoa such as "Giardia", but work well against bacteria and viruses.
UV light is effective against both viruses and cellular organisms, but only works in clear water, and it is ineffective unless manufacturer's instructions are carefully followed for maximum water depth/distance from UV source, and for dose/exposure time. Other claimed advantages include short treatment time, elimination of the need for boiling, no taste alteration, and decreased long-term cost compared with bottled water. The effectiveness of UV devices is reduced when water is muddy or turbid; as UV is a type of light, any suspended particles create shadows that hide microorganisms from UV exposure.
In cats, giardiasis responds to metronidazole, although this should not be administered to pregnant cats as it can cause developmental malformations. An alternative and effective drug is febendazole.
Diagnosis is made by paracentesis (needle aspiration of the ascitic fluid). SBP is diagnosed if the fluid contains neutrophils (a type of white blood cell) at greater than 250 cells per mm (equals a cell count of 250 x10/L) fluid in the absence of another reason for this (such as inflammation of one of the internal organs or a perforation). The fluid is also cultured to identify bacteria. If the sample is sent in a plain sterile container 40% of samples will identify an organism, while if the sample is sent in a bottle with culture medium the sensitivity increases to 72–90%.
Patients with ascites underwent routine paracentesis, the incidence of active SBP ranged from 10% to 27% at the time of hospital admission.
human intestinal spirochetosis, also intestinal spirochetes, colonic spirochetosis and colonic spirochetes, is an infection of the colonic-type mucosa with spirochete microorganisms.