Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Since 1979, the disorder has been recognized by the American Academy of Sleep Medicine:
- "Diagnostic Classification of Sleep and Arousal Disorders" (DCSAD), 1979: Non-24-Hour Sleep–Wake Syndrome; code C.2.d
- "The International Classification of Sleep Disorders", 1st & Revised eds. (ICSD), 1990, 1997: Non-24-Hour Sleep–Wake Syndrome (or Non-24-Hour Sleep–Wake Disorder); code 780.55-2
- "The International Classification of Sleep Disorders", 2nd ed. (ICSD-2), 2005: Non-24-Hour Sleep–Wake Syndrome (alternatively, Non-24-Hour Sleep–Wake Disorder); code 780.55-2
Since 2005, the disorder has been recognized by name in the U.S. National Center for Health Statistics and the U.S. Centers for Medicare and Medicaid Services in their adaptation and extension of the WHO's "International Statistical Classification of Diseases and Related Health Problems" (ICD):
- ICD-9-CM: Circadian rhythm sleep disorder, free-running type; code 327.34 became effective in October 2005. Prior to the introduction of this code, the nonspecific code 307.45, Circadian rhythm sleep disorder of nonorganic origin, was available, and as of 2014 remains the code recommended by the DSM-5.
- ICD-10-CM: Circadian rhythm sleep disorder, free running type; code G47.24 is due to take effect October 1, 2014.
Since 2013, the disorder has been recognized by the American Psychiatric Association:
- DSM-5, 2013: Circadian rhythm sleep–wake disorders, Non-24-hour sleep–wake type; ICD-9-CM code 307.45 is recommended (no acknowledgment of 327.34 is made), and ICD-10-CM code G47.24 is recommended when it goes into effect.
The disorder can be considered very likely in a totally blind person with periodic insomnia and daytime sleepiness, although other causes for these common symptoms need to be ruled out. In the research setting, the diagnosis can be confirmed, and the length of the free-running circadian cycle can be ascertained, by periodic assessment of circadian marker rhythms, such as the core body temperature rhythm, the timing of melatonin secretion, or by analyzing the pattern of the sleep–wake schedule using actigraphy. Most recent research has used serial measurements of melatonin metabolites in urine or melatonin concentrations in saliva. These assays are not currently available for routine clinical use.
In patients who are at high likelihood of having OSA, a randomized controlled trial found that home oximetry (a non-invasive method of monitoring blood oxygenation) may be adequate and easier to obtain than formal polysomnography. High probability patients were identified by an Epworth Sleepiness Scale (ESS) score of 10 or greater and a Sleep Apnea Clinical Score (SACS) of 15 or greater. Home oximetry, however, does not measure apneic events or respiratory event-related arousals and thus does not produce an AHI value.
Because a number of parasomnias may be confused with RBD, it is necessary to conduct formal sleep studies such as polysomnography (PSG) performed at sleep centers that are experienced in evaluating parasomnias in order to establish a diagnosis. In RBD, a single night of extensive monitoring of sleep, brain, and muscle activity will almost always reveal the lack of muscle paralysis during REM sleep, and it will also eliminate other causes of parasomnias.
Recently, due to the limited access to PSG, attempts have been made to identify RBD from clinical interview as well as questionnaires. Postuma et al. have validated a single-question screening tool for RBD (RBD1Q) that could be easily applied in general practice to the patient and their bed partner. A positive answer to the RBDQ1, ‘Have you ever been told or suspected yourself, that you seem to act out your dreams while asleep (for example, punching, flailing your arms in the air, making running movement etc.)?’ should encourage the medical practitioner to consider the diagnosis of RBD as it offers good sensitivity (94%) and specificity (87%). Other questionnaires, such as the Rapid Eye Movement (REM) sleep Behavior Disorder Screening Questionnaire (RBDSQ) or the REM Sleep Behavior Questionnaires – Hong-Kong are available for more detailed characterisation.
A neurological condition or another medical problem may be suspected, in which case, blood tests, a CT scan or an MRI may be used. An overnight sleep study is usually not needed to detect this disorder, but may be indicated if other sleep disorders, such as sleep apnea and periodic limb movement disorder, seem likely. The overnight sleep study is called polysomnography. It charts brain waves, heart beat, muscle activity, and breathing during sleep. It also records arm and leg movement. It will show if there are other sleep disorders that are causing or increasing the problems with ISWD.
A physician specializing in sleep medicine may ask patients about their medical history; for example: neurological problems, prescription or non-prescription medications taken, alcohol use, family history, and any other sleep problems. A thorough medical and neurological exam is indicated. The patient will be asked to complete a sleep diary, recording natural sleep and wake up times, over several weeks. Sleep rating with the Epworth Sleepiness Scale may be used.
Diagnosis of Rhythmic Movement Disorder is done on an exclusionary basis in which other closely related movement disorders are systematically ruled out. Because of this, a thorough clinical evaluation is necessary. Often, impairments are not severe enough to warrant this process and so RMD is not often diagnosed unless there are extremely interfering or disabling symptoms. Many patients do not seek treatment for RMD directly and most seek professional help to alleviate sleep-affecting symptoms. To compound the issue, many sufferers are often misdiagnosed as having Restless Legs Syndrome or sleep apnea or some combination of the two. Rhythmic Movement Disorder differs from Restless Legs Syndrome in that RMD involves involuntary contractions of muscles with no urge or uncomfortable sensation to provoke such movement. Additionally, 80-90% of Restless Legs Syndrome sufferers show periodic limb movements as observed on a polysomnogram, which are not common in RMD patients. Rhythmic Movement Disorder can also have symptoms that overlap with epilepsy. However, use of a polysomnogram can help distinguish one disorder from the other as RMD involves movements in both REM and NREM sleep, which is unusual for seizures
. Additionally, patients can usually stop the movements upon request, unlike the movements observed in epilepsy. Other movement disorders like Parkinson’s Disease, Huntington’s Disease, ataxia, and dystonia differ from RMD in that they occur primarily during wakefulness and reduced sleep, whereas RMD episodes occur in or around sleep
Polysomnograms can be used to help diagnose UARS. Patient who have UARS typically show multiple EEG arousals during the sleep study and little to no polygraphic evidence of obstructive sleep apnea or decreased levels of oxygen. UARS arousals, or respiratory-effort related arousals, typically last for one to three breaths. These arousals may be due to snoring, but patients do not need to snore in order to have UARS. Polysomnogram patterns must exhibit no evidence of apneas or hypopneas in order to be lead to a diagnosis of UARS. Even with polysomnography, diagnosis of UARS may be difficult because of insufficient means of measuring changes in airflow. This lack of sensitivity in detection may lead to misdiagnosis, as minor undetectable changes in airflow may still be responsible for the arousals. In order to definitively diagnose UARS, there must be a demonstrated pattern of greater negative esophageal pressures which are then followed by a rapid change to a more positive level with a sleep arousal. This can be confirmed with invasive polysomnography that uses an esophageal balloon transducer and full pneumotachograph.
Based on symptoms, patients are commonly misdiagnosed with chronic fatigue syndrome, fibromyalgia, or a psychiatric disorder such as ADHD or depression.
Once diagnosed, ASPD can be treated with bright light therapy in the evenings or behaviorally with chronotherapy. Unlike other sleep disorders, ASPD does not disrupt normal functioning at work during the day and the patient does not complain of excessive daytime sleepiness. If their ASPD is causing people to lose out on evening activities, including putting their own typical children to bed, they may be able to force themselves to stay up later than their circadian rhythm requires. A sufferer of ASPD will still wake up very early and if this cycle continues it can lead to chronic sleep deprivation and other sleep disorders.
The 2001 International Classification of Sleep Disorders (ICSD) divides primary hypersomnia syndromes between narcolepsy, idiopathic hypersomnia, and the recurrent hypersomnias (like Klein-Levin syndrome); it further divides narcolepsy into that with cataplexy and that without cataplexy. This ICSD version defines narcolepsy as a disorder of unknown cause "that is characterized by excessive sleepiness that typically is associated with cataplexy and other REM-sleep phenomena, such as sleep paralysis and hypnagogic hallucinations". It also establishes baseline categorical standards for diagnosis of narcolepsy, through 2 sets of well defined criteria, as follows.
Minimal narcolepsy diagnostic criteria set #2:
- A "complaint of excessive sleepiness or sudden muscle weakness."
- Associated features that include: sleep paralysis; disrupted major sleep episode; hypnagogic hallucinations; automatic behaviors.
- Polysomnography with one or more of the following: "sleep latency less than 10 minutes;" "REM sleep latency less than 20 minutes;" an MSLT with a mean sleep latency less than 5 minutes; "two or more sleep-onset REM periods" (SOREMPs).
- "No medical or mental disorder accounts for the symptoms." (see hypersomnia differential diagnosis)
In the absence of clear cataplexy, it becomes much more difficult to make a firm diagnosis of narcolepsy. “Various terms, such as essential hypersomnia, primary hypersomnia, ambiguous narcolepsy, atypical narcolepsy, etc., have been used to classify these patients, who may be in the developing phase of narcolepsy.”
Since the 2001 ICSD, the classification of primary hypersomnias has been steadily evolving, as further research has shown more overlap between narcolepsy and idiopathic hypersomnia. The 3rd edition of the ICSD is currently being finalized, and its new classification will label narcolepsy caused by orexin deficiency as “type 1 narcolepsy,” which is almost always associated with cataplexy. The other primary hypersomnias will remain subdivided based on the presence of SOREMPs. They will be labeled: “type 2 narcolepsy,” with 2 or more SOREMPs on MSLT; and “idiopathic hypersomnia,” with less than 2 SOREMPS.
However, “there is no evidence that the pathophysiology or therapeutic response is substantially different for hypersomnia with or without SOREMPs on the MSLT.” Given this currently understood overlap of idiopathic hypersomnia and narcolepsy, the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) is also updating its classification of the primary hypersomnias. It reclassifies narcolepsy without cataplexy as major somnolence disorder (MSD). Additionally, MSD will encompass all syndromes of hypersomnolence not explained by low orexin concentrations, including idiopathic hypersomnia (with and without long sleep time) and long sleepers (people requiring >10 hours sleep/day).
Further complicating these updated classification schemes, overlap between narcolepsy "with" cataplexy and idiopathic hypersomnia has also been reported. A subgroup of narcoleptics with long sleep time, comprising 18% of narcoleptics in one study, had symptoms of both narcolepsy with cataplexy and idiopathic hypersomnia (long sleep time and unrefreshing naps). It is believed that this subgroup might have dysfunction in multiple arousal systems, including orexin and GABA (see idiopathic hypersomnia causes).
Polysomnography is also used to aid in the diagnosis of other sleep disorders such as obstructive sleep apnea (OSA), narcolepsy, and restless leg syndrome (RLS). Normal test results show little to no episodes of sleep apnea and normal electrical activity in the individual's brain and muscles during sleep.
Diagnosis is relatively easy when all the symptoms of narcolepsy are present, but if the sleep attacks are isolated and cataplexy is mild or absent, diagnosis is more difficult. It is also possible for cataplexy to occur in isolation. Three tests that are commonly used in diagnosing narcolepsy are the polysomnogram, the multiple sleep latency test (MSLT), and administration of the Epworth Sleepiness Scale. These tests are usually performed by a sleep specialist. The polysomnogram involves continuous recording of sleep brain waves and a number of nerve and muscle functions during night time sleep. When tested, people with narcolepsy fall asleep rapidly, enter REM sleep early, and may often awaken during the night. The polysomnogram also helps to detect other possible sleep disorders that could cause daytime sleepiness.
The Epworth Sleepiness Scale is a brief questionnaire that is administered to determine the likelihood of the presence of a sleep disorder, including narcolepsy. For the multiple sleep latency test, a person is given a chance to sleep every 2 hours during normal wake times. The patient is taken in usually for an overnight sleep study. The following day the patient will have multiple tests where they will be told to nap after a full nights sleep (usually eight hours). Observations are made of the time taken to reach various stages of sleep (sleep onset latency). This test measures the degree of daytime sleepiness and also detects how soon REM sleep begins. Again, people with narcolepsy fall asleep rapidly and enter REM sleep early. Occasionally, a multiple sleep latency test can result in a false-negative for a narcoleptic.
The system which regulates sleep, arousal, and transitions between these states in humans is composed of three interconnected subsystems: the orexin projections from the lateral hypothalamus, the reticular activating system, and the ventrolateral preoptic nucleus. In narcoleptic individuals, these systems are all associated with impairments due to a greatly reduced number of hypothalamic orexin projection neurons and significantly fewer orexin neuropeptides in cerebrospinal fluid and neural tissue, compared to non-narcoleptic individuals. Those with narcolepsy generally experience the REM stage of sleep within five minutes of falling asleep, while people who do not have narcolepsy (unless they are significantly sleep deprived) do not experience REM until after a period of slow-wave sleep, which lasts for about the first hour or so of a sleep cycle.
Measuring orexin levels in a person's cerebrospinal fluid sampled in a spinal tap may help in diagnosing narcolepsy, with abnormally low levels serving as an indicator of the disorder. This test can be useful when MSLT results are inconclusive or difficult to interpret.
In general, there are two broad classes of treatment, and the two may be combined: psychological (cognitive-behavioral) and pharmacological. In situations of acute distress such as a grief reaction, pharmacologic measures may be most appropriate. With primary insomnia, however, initial efforts should be psychologically based, including discussion of good sleep hygiene. Other specific treatments are appropriate for some of the disorders, such as ingestion of the hormone melatonin, correctly timed bright light therapy and correctly timed dark therapy or light restriction for the circadian rhythm sleep disorders. Specialists in sleep medicine are trained to diagnose and treat these disorders, though many specialize in just some of them.
Polysomnography is a study conducted while the individual being observed is asleep. A polysomnograph (PSG) is a recording of an individual's body functions as they sleep. Complete sleep studies are most commonly facilitated at a designated sleep center. Specialized electrodes and monitors are connected to the individual and remain in place throughout study. Video cameras can be used in certain cases to record physical behaviors occurring while the individual is asleep. Typically the unwanted sexual behaviors do not present on film, therefore the majority of information is taken from a sleep study.
DSPD is diagnosed by a clinical interview, actigraphic monitoring, and/or a sleep diary kept by the patient for at least two weeks. When polysomnography is also used, it is primarily for the purpose of ruling out other disorders such as narcolepsy or sleep apnea. If a person can adjust to a normal daytime schedule on her/his own, with just the help of alarm clocks and will-power, the diagnosis is not given.
DSPD is frequently misdiagnosed or dismissed. It has been named as one of the sleep disorders most commonly misdiagnosed as a primary psychiatric disorder. DSPD is often confused with: psychophysiological insomnia; depression; psychiatric disorders such as schizophrenia, ADHD or ADD; other sleep disorders; or school refusal. Practitioners of sleep medicine point out the dismally low rate of accurate diagnosis of the disorder, and have often asked for better physician education on sleep disorders.
In 1999, Louis Ptáček's and Ying-Hui Fu's research group at the University of California, San Francisco reported findings of a human circadian rhythm disorder showing a familial tendency. The disorder was characterized by a lifelong pattern of sleep onset around 7:30 p.m. and offset around 4:30 a.m. Among three lineages, 29 people were identified as affected with this familial advanced sleep-phase disorder (FASPD), and 46 were considered unaffected. The pedigrees demonstrated FASPD to be a highly penetrant, autosomal dominant trait.
Two years after reporting the finding of FASPD, Ptáček's and Fu's groups published results of genetic sequencing analysis on a family with FASPD. They genetically mapped the FASPD locus to chromosome 2q where very little human genome sequence was then available. Thus, they identified and sequenced all the genes in the critical interval. One of these was Period2 (Per2). Sequencing of the hPer2 gene revealed a serine-to-glycine point mutation in the CKI binding domain of the hPER2 protein that resulted in hypophosphorylation of Per2 in vitro.
In 2005, Fu's and Ptáček's labs reported discovery of a different mutation causing FASPD. This time, CKIδ was implicated, demonstrating an A-to-G missense mutation that resulted in a threonine-to-alanine alteration in the protein. The evidence for both of these reported causes of FASPD is strengthened by the absence of said mutations in all tested control subjects and by demonstration of functional consequences of the respective mutations in vitro. Fruit flies and mice engineered to carry the human mutation also demonstrated abnormal circadian phenotypes although the mutant flies had a long circadian period while the mutant mice had a shorter period. The differences between flies and mammals that account for this difference are not known. Most recently, Ptáček and Fu reported additional studies of the human Per2 S662G mutation and generation of mice carrying the human mutation. These mice had a circadian period almost 2 hours shorter than wild-type animals. Genetic dosage studies of CKIδ on the Per2 S662G mutation revealed that CKIδ is having opposite effects on Per2 levels depending on the sites on Per2 that CKIδ is phosphorylating.
Oximetry, which may be performed over one or several nights in a person's home, is a simpler, but less reliable alternative to a polysomnography. The test is only recommended when requested by a physician and should not be used to test those without symptoms. Home oximetry may be effective in guiding prescription for automatically self-adjusting continuous positive airway pressure.
After a patient receives a diagnosis, the diagnosing physician can provide different options for treatment.
- Mechanical regulation of airflow and/or airway pressure:
- An experimental pacemaker for the diaphragm has shown promising results in overcoming central sleep apnea.
Diagnosis of OSA is often based on a combination of patient history and tests (lab- or home-based).
These tests range, in decreasing order of cost, complexity and tethering of the patient (number and type of channels of data recorded), from lab-attended full polysomnography ("sleep study") down to single-channel home recording. In the USA, these categories are associated with insurance classification from Type I down to Type IV. Reimbursement rules vary among European countries. In a systematic review of published evidence, the United State Preventive Services Task Force in 2017 concluded that there was uncertainty about the accuracy or clinical utility of all potential screening tools for OSA, and recommended that current evidence is insufficient to assess the balance of benefits and harms of screening for OSA in asymptomatic adults.
Although "there has been no cure of chronic hypersomnia", there are several treatments that may improve patients' quality of life, depending on the specific cause or causes of hypersomnia that are diagnosed.
Treatment of sleep apnea via a continuous positive airway pressure (CPAP) device has shown dramatic improvement in apnea and nearly complete resolution of RMD symptoms. Behavioral interventions may alleviate some RMD symptoms and movements. In such a therapy, sufferers are asked to perform RMD-like motions during the day in a slow and methodic manner. In such, patients come short of full rhythmic movements that they experience in sleep. Such behavioral training has been shown to carry over into sleep, and the forcefulness of the RMD movements is reduced or eliminated. Hypnosis and sleep restriction have been used in some cases to good effect.
The primary treatment for children is the removal of enlarged tonsils and adenoids via a tonsillectomy and adenoidectomy. Orthodontic treatment is frequently recommended and CPAP may also be necessary for children with UARS.
Excess body weight is thought to be an important cause of sleep apnea. In weight loss studies of obese and overweight individuals, those who lose weight show reduced apnea frequencies and improved Apnoea–Hypopnoea Index (AHI) compared to controls.
The light-dark cycle is the most important environmental time cue for entraining circadian rhythms of most species, including humans, and bright artificial light exposure has been developed as a method to improve circadian adaptation in night workers. The timing of bright light exposure is critical for its phase shifting effects. To maximize a delay of the body clock, bright light exposure should occur in the evening or first part of the night, and bright light should be avoided in the morning. Wearing dark goggles (avoiding bright light) or blue-blocking goggles during the morning commute home from work can improve circadian adaptation. For workers who want to use bright light therapy, appropriate fixtures of the type used to treat winter depression are readily available but patients need to be educated regarding their appropriate use, especially the issue of timing. Bright light treatment is not recommended for patients with light sensitivity or ocular disease.
A diagnosis of sleep apnea requires determination by a physician. The examination may require a study of an individual in a sleep lab, although the AAST has said a two belt IHT (In Home Test) will replace a PSG for diagnosing obstructive apnea. There, the patient will be monitored while at rest, and the periods when breathing ceases will be measured with respect to length and frequency. During a PSG (polysomnography) (a sleep study), a person with sleep apnea shows breathing interruptions followed by drops/reductions in blood oxygen and increases in blood carbon dioxide level.
- In adults, a pause must last 10 seconds to be scored as an apnea. However, in young children, who normally breathe at a much faster rate than adults, shorter pauses may still be considered apneas.
- Hypopneas in adults are defined as a 30% reduction in air flow for more than ten seconds, followed by oxygen-saturation declines of at least 3% or 4% per the AASM stndards. and/or EEG arousal. The Apnea-Hypopnea Index (AHI) is expressed as the number of apneas or hypopneas per hour of sleep.
As noted above, in central sleep apnea, the cessation of airflow is associated with the absence of physical attempts to breathe; specifically, polysomnograms reveal correlation between absence of rib cage and abdominal movements and cessation of airflow at the nose and lips. By contrast, in obstructive sleep apnea, pauses are not correlated with the absence of attempts to breathe and may even be correlated with more effortful breathing in an instinctive attempt to overcome the pressure on the sufferer's airway. If the majority of a sleep-apnea sufferer's apneas/hypopneas are central, his condition is classified as central; likewise, if the majority are obstructive, his condition is classified as obstructive.