Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Different types of ataxia:
- congenital ataxias (developmental disorders)
- ataxias with metabolic disorders
- ataxias with a DNA repair defect
- degenerative ataxias
- ataxia associated with other features.
Clinical diagnosis is conducted on individuals with age onset between late teens and late forties who show the initial characteristics for the recessive autosomal cerebellar ataxia.
The following tests are performed:
- MRI brain screening for cerebellum atrophy.
- Molecular genetic testing for SYNE-1 sequence analysis.
- Electrophysiologic studies for polyneurotherapy
- Neurological examination
Prenatal diagnosis and preimplantation genetic diagnosis (PGD) can be performed to identify the mothers carrying the recessive genes for cerebellar ataxia.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
Diagnosis is suspected clinically and family history, neuroimaging and genetic study helps to confirm Behr Syndrome.
Diagnosis requires a neurological examination and neuroimaging can be helpful.
BVVL can be differentially diagnosed from similar conditions like Fazio-Londe syndrome and amyotrophic lateral sclerosis, in that those two conditions don't involve sensorineural hearing loss, while BVVL, Madras motor neuron disease, Nathalie syndrome, and Boltshauser syndrome do. Nathalie syndrome does not involve lower cranial nerve symptoms, so it can be excluded if those are present. If there is evidence of lower motor neuron involvement, Boltshauser syndrome can be excluded. Finally, if there is a family history of the condition, then BVVL is more likely than MMND, as MMND tends to be sporadic.
Genetic testing is able to identify genetic mutations underying BVVL.
Diffuse, symmetric white matter abnormalities were demonstrated by magnetic resonance imaging (MRI) suggesting that Behr syndrome may represent a disorder of white matter associated with an unknown biochemical abnormality.
A diagnosis of Friedreich's ataxia requires a careful clinical examination, which includes a medical history and a thorough physical exam, in particular looking for balance difficulty, loss of proprioception, absence of reflexes, and signs of neurological problems. Genetic testing now provides a conclusive diagnosis. Other tests that may aid in the diagnosis or management of the disorder include:
- Electromyogram (EMG), which measures the electrical activity of muscle cells,
nerve conduction studies, which measure the speed with which nerves transmit impulses
- Electrocardiogram (ECG), which gives a graphic presentation of the electrical activity or beat pattern of the heart
- Echocardiogram, which records the position and motion of the heart muscle
- Blood tests to check for elevated glucose levels and vitamin E levels
- Magnetic resonance imaging (MRI) or computed tomography (CT) scans, tests which provide brain and spinal cord images that are useful for ruling out other neurological conditions
In diagnosing autosomal dominant cerebellar ataxia the individuals clinical history or their past health examinations, a current physical examination to check for any physical abnormalities, and a genetic screening of the patients genes and the genealogy of the family are done. The large category of cerebellar ataxia is caused by a deterioration of neurons in the cerebellum, therefore magnetic resonance imaging (MRI) is used to detect any structural abnormality such as lesions which are the primary cause of the ataxia. Computed tomography (CT) scans can also be used to view neuronal deterioration, but the MRI provides a more accurate and detailed picture.
Blood lactate and pyruvate levels usually are elevated as a result of increased anaerobic metabolism and a decreased ratio of ATP:ADP. CSF analysis shows an elevated protein level, usually >100 mg/dl, as well as an elevated lactate level.
MJD can be diagnosed by recognizing the symptoms of the disease and by taking a family history. Physicians ask patients questions about the kind of symptoms relatives with the disease had, the progression and harshness of symptoms, and the ages of onset in family members.
Presymptomatic diagnosis of MJD can be made with a genetic test. The direct detection of the genetic mutation responsible for MJD has been available since 1995. Genetic testing looks at the number of CAG repeats within the coding region of the MJD/ATXN3 gene on chromosome 14. The test will show positive for MJD if this region contains 61-87 repeats, as opposed to the 12-44 repeats found in healthy individuals. A limitation to this test is that if the number of CAG repeats in an individual being tested falls between the healthy and pathogenic ranges (45-60 repeats), then the test cannot predict whether an individual will have MJD symptoms.
To gain a better understanding of the disease, researchers have retrospectively reviewed medical records of probands and others who were assessed through clinical examinations or questionnaires. Blood samples are collected from the families of the probands for genetic testing. These family members are assessed using their standard medical history, on their progression of Parkinson's like symptoms (Unified Parkinson's Disease Rating Scale), and on their progression of cognitive impairment such as dementia (Folstein Test).
It is not necessary to biopsy an ocular muscle to demonstrate histopathologic abnormalities. Cross-section of muscle fibers stained with Gömöri trichrome stain is viewed using light microscopy. In muscle fibers containing high ratios of the mutated mitochondria, there is a higher concentration of mitochondria. This gives these fibers a darker red color, causing the overall appearance of the biopsy to be described as "ragged red fibers. Abnormalities may also be demonstrated in muscle biopsy samples using other histochemical studies such as mitochondrial enzyme stains, by electron microscopy, biochemical analyses of the muscle tissue (ie electron transport chain enzyme activities), and by analysis of muscle mitochondrial DNA. "
Standard MRI scans have been performed on 1.5 Tesla scanners with 5 mm thickness and 5 mm spacing to screen for white matter lesions in identified families. If signal intensities of the MRI scans are higher in white matter regions than in grey matter regions, the patient is considered to be at risk for HDLS, although a number of other disorders can also produce white matter changes and the findings are not diagnostic without genetic testing or pathologic confirmation.
Neuroimaging like MRI is important. However, there was considerable intrafamilial variability regarding neuroimaging, with some individuals showing normal MRI findings. Early individual prognosis of such autosomal recessive cerebellar ataxias is not possible from early developmental milestones, neurological signs, or neuroimaging.
There is currently no cure for SCA 6; however, there are supportive treatments that may be useful in managing symptoms.
In terms of a cure there is currently none available, however for the disease to manifest itself, it requires mutant gene expression. Manipulating the use of protein homoestasis regulators can be therapuetic agents, or a treatment to try and correct an altered function that makes up the pathology is one current idea put forth by Bushart, et al. There is some evidence that for SCA1 and two other polyQ disorders that the pathology can be reversed after the disease is underway. There is no effective treatments that could alter the progression of this disease, therefore care is given, like occupational and physical therapy for gait dysfunction and speech therapy.
The most useful information for accurate diagnosis is the symptoms and weakness pattern. If the quadriceps are spared but the hamstrings and iliopsoas are severely affected in a person between ages of 20 - 40, it is very likely HIBM will be at the top of the differential diagnosis. The doctor may order any or all of the following tests to ascertain if a person has IBM2:
- Blood test for serum Creatine Kinase (CK or CPK);
- Nerve Conduction Study (NCS) / Electomyography (EMG);
- Muscle Biopsy;
- Magnetic Resonance Imaging (MRI) or Computer Tomography (CT) Scan to determine true sparing of quadriceps;
- Blood Test or Buccal swab for genetic testing;
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.
There are five sub-types of MJD that are characterized by the age of onset and range of symptoms.
The sub-types illustrate a wide variety of symptoms that patients can experience. However, assigning individuals to a specific sub-type of the disease is of limited clinical significance.
- Type I is distinguished by arrival between the ages of 10 and 30 and represents approximately 13% of individuals. It usually has fast development and severe rigidity and dystonia.
- Type II is the most common sub-type (approximately 57% of individuals with MJD ) and typically begins between 20 and 50 years of age . It has an intermediate progression and causes symptoms that include spasticity, exaggerated reflex responses and spastic gait, ataxia and upper motor neuron signs.
- Type III MJD has a slow progression. Patients typically have an onset between the ages of 40 and 70 and represent approximately 30% of MJD patients. Symptoms include muscle twitching, tingling, cramps, unpleasant sensations such as numbness, pain in the feet, hands and limbs and muscle atrophy. Nearly all patients experience a decline in their vision such as blurred vision, double vision, inability to control eye movements, and loss of capability to distinguish color. Some patients also experience Parkinsonian symptoms.
- Type IV is distinguished by Parkinsonian symptoms that respond particularly well to levodopa treatment.
- Type V appears to resemble Hereditary Spastic Paraplegia; however, more research is needed to conclude the relationship between Type V MJD and hereditary spastic paraplegia.
Diagnosis of MSA can be challenging because there is no test that can definitively make or confirm the diagnosis in a living patient. Clinical diagnostic criteria were defined in 1998 and updated in 2007. Certain signs and symptoms of MSA also occur with other disorders, such as Parkinson's disease, making the diagnosis more difficult.
Both MRI and CT scanning frequently show a decrease in the size of the cerebellum and pons in those with cerebellar features. The putamen is hypodense on T2-weighted MRI and may show an increased deposition of iron in Parkinsonian form. In cerebellar form, a "hot cross" sign has been emphasized; it reflects atrophy of the pontocereballar fibers that manifest in T2 signal intensity in atrophic pons.
A definitive diagnosis can only be made pathologically on finding abundant glial cytoplasmic inclusions in the central nervous system.
Diagnosis of Jansky–Bielschowsky disease is increasingly based on assay of enzyme activity and molecular genetic testing. Thirteen pathogenic candidate genes—PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, CLN8, CTSD, DNAJC5, CTSF, ATP13A2 GRN, KCTD7—are associated with the development of the disease. Patients with Jansky–Bielschowsky disease typically have up to 50% reduced lysosomal enzymes, and thus an enzyme activity assay is a quick and easy diagnostic test.
Vision impairment is an early symptom of Jansky–Bielschowsky disease, and so an eye exam is another common diagnostic tool. During the eye exam, loss of cells within the eye would indicate the presence of the disease however more tests are needed for a complete diagnosis.
Other common diagnostic tests include:
- Blood or urine test: Elevated levels of the chemical dolichol found in the urine is typical of individuals with the disease, as well as the presence of vacuolated lymphocytes in the blood.
- Skin or tissue sampling: Microscopy of skin could be used to observe lipopigment aggregation.
- CT scan or MRI: Visualization of the brain would be able to detect areas of cerebral atrophy.
Brain MRI shows vermis atrophy or hypoplasic. Cerebral and cerebellar atrophy with white matter changes in some cases.
Protein function tests that demonstrate a reduce in chorein levels and also genetic analysis can confirm the diagnosis given to a patient. For a disease like this it is often necessary to sample the blood of the patient on multiple occasions with a specific request given to the haematologist to examine the film for acanthocytes. Another point is that the diagnosis of the disease can be confirmed by the absence of chorein in the western blot of the erythrocyte membranes.
The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with telangiectasia and sometimes increased infections, and confirmed by specific laboratory abnormalities (elevated alpha-fetoprotein levels, increased chromosomal breakage or cell death of white blood cells after exposure to X-rays, absence of ATM protein in white blood cells, or mutations in each of the person’s ATM genes).
A variety of laboratory abnormalities occur in most people with A-T, allowing for a tentative diagnosis to be made in the presence of typical clinical features. Not all abnormalities are seen in all patients. These abnormalities include:
- Elevated and slowly increasing alpha-fetoprotein levels in serum after 2 years of age
- Immunodeficiency with low levels of immunoglobulins (especially IgA, IgG subclasses, and IgE) and low number of lymphocytes in the blood
- Chromosomal instability (broken pieces of chromosomes)
- Increased sensitivity of cells to x-ray exposure (cells die or develop even more breaks and other damage to chromosomes)
- Cerebellar atrophy on MRI scan
The diagnosis can be confirmed in the laboratory by finding an absence or deficiency of the ATM protein in cultured blood cells, an absence or deficiency of ATM function (kinase assay), or mutations in both copies of the cell’s ATM gene. These more specialized tests are not always needed, but are particularly helpful if a child’s symptoms are atypical.