Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
It is possible to clinically detect Alström syndrome in infancy, but more frequently, it is detected much later, as doctors tend to detect symptoms as separate problems. Currently, Alström syndrome is often diagnosed clinically, since genetic testing is costly and only available on a limited basis.
A physical examination would be needed to properly diagnose the patient. Certain physical characteristics can determine if the patient has some type of genetic disorder. Usually, a geneticist would perform the physical examination by measuring the distance around the head, distance between the eyes, and the length of arms and legs. In addition, examinations for the nervous system or the eyes may be performed. Various imaging studies like computerized tomography scans (CT), Magnetic Resonance Imaging (MRI), or X-rays are used to see the structures within the body.
Family and personal medical history are required. Information about the health of an individual is crucial because it provides traces to a genetic diagnosis.
Laboratory tests, particularly genetic testing, are performed to diagnose genetic disorders. Some of the types of genetic testing are molecular, biochemical, and chromosomal. Other laboratory tests performed may measure levels of certain substances in urine and blood that can also help suggest a diagnosis.
Diagnosis is made on the basis of the association of gastro-oesophageal reflux with the characteristic movement disorder. Neurological examination is usually normal. Misdiagnosis as benign infantile spasms or epileptic seizures is common, particularly where clear signs or symptoms of gastro-oesophageal reflux are not apparent. Early diagnosis is critical, as treatment is simple and leads to prompt resolution of the movement disorder.
Prevention for Alström Syndrome is considered to be harder compared to other diseases/syndromes because it is an inherited condition. However, there are other options that are available for parents with a family history of Alström Syndrome. Genetic testing and counseling are available where individuals are able to meet with a genetic counselor to discuss risks of having the children with the disease. The genetic counselor may also help determine whether individuals carry the defective ALSM1 gene before the individuals conceive a child. Some of the tests the genetic counselors perform include chorionic villus sampling (CVS), Preimplantation genetic diagnosis (PGD), and amniocentesis. With PGD, the embryos are tested for the ALSM1 gene and only the embryos that are not affected may be chosen for implantation via in vitro fertilization.
Successful treatment of the associated underlying disorder, such as GORD or hiatus hernia, may provide relief.
The isochromosome i(12p) can be primarily detected in samples of skin fibroblasts, as well as in chorionic villus and amniotic fluid cell samples. Very rarely, it can also be detected in blood lymphocytes. It is also possible to detect the isochromosome in circulating lymphocytes, as well as other amniotic and placental samples. There is no strict limit as to where the isochromosome can be found. However, it is often unlikely that these samples will be tested when the blood karyotype is normal.
Using an ultrasound, Pallister-Killian may be diagnosed through observation of hypertelorism, broad neck, shorts limbs, abnormal hands or feet, diaphragmatic hernia, and hydramnios. Once born, a child may be diagnosed by observation of the syndrome's distinct facial features.
This is an ill-defined disorder of uncertain nosological validity. The category is included here because of the evidence that children with moderate to severe intellectual disability (IQ below 35) who exhibit major problems in hyperactivity and inattention frequently show stereotyped behaviours; such children tend not to benefit from stimulant drugs (unlike those with an IQ in the normal range) and may exhibit a severe dysphoric reaction (sometimes with psychomotor retardation) when given stimulants; in adolescence the overactivity tends to be replaced by underactivity (a pattern that is not usual in hyperkinetic children with normal intelligence). It is also common for the syndrome to be associated with a variety of developmental delays, either specific or global. The extent to which the behavioural pattern is a function of low IQ or of organic brain damage is not known, neither is it clear whether the disorders in children with mild intellectual disability who show the hyperkinetic syndrome would be better classified here or under F90.- (Hyperkinetic disorders); at present they are included in F90-.
Diagnostic guidelines
Diagnosis depends on the combination of developmentally inappropriate severe overactivity, motor stereotypies, and moderate to severe intellectual disability; all three must be present for the diagnosis. If the diagnostic criteria for F84.0 (childhood autism), F84.1 (atypical autism) or F84.2 (Rett's syndrome) are met, that condition should be diagnosed instead.
Diagnosis is mainly based on clinical features. However, biopsy has been useful in diagnosis as well as in differentiating between the different types of the disease.
The symptoms of Klinefelter syndrome are often variable; therefore, a karyotype analysis should be ordered when small testes, infertility, gynecomastia, long legs/arms, developmental delay, speech/language deficits, learning disabilities/academic issues and/or behavioral issues are present in an individual. The differential diagnosis for the Klinefelter syndrome can include the following conditions: fragile X syndrome, Kallmann syndrome and Marfan syndrome. The cause of hypogonadism can be attributed to many other different medical conditions.
There have been some reports of individuals with Klinefelter syndrome who also have other chromosome abnormalities, such as Down syndrome.
About 10% of Klinefelter cases are found by prenatal diagnosis. The first clinical features may appear in early childhood or, more frequently, during puberty, such as lack of secondary sexual characteristics and aspermatogenesis. Despite the presence of small testes, only a quarter of the affected males are recognized as having Klinefelter syndrome at puberty. Another quarter receive their diagnosis in late adulthood. About 64% of affected individuals are never recognized. Often the diagnosis is made incidentally as a result of examinations and medical visits for reasons not linked to the condition.
The standard diagnostic method is the analysis of the chromosomes' karyotype on lymphocytes. In the past, the observation of the Barr body was common practice as well. To confirm mosaicism, it is also possible to analyze the karyotype using dermal fibroblasts or testicular tissue.
Other methods may be: research of high serum levels of gonadotropins (follicle-stimulating hormone and luteinizing hormone), presence of azoospermia, determination of the sex chromatin, and prenatally via chorionic villus sampling or amniocentesis. A 2002 literature review of elective abortion rates found that approximately 58% of pregnancies in the United States with a diagnosis of Klinefelter syndrome were terminated.
Turner syndrome may be diagnosed by amniocentesis or chorionic villus sampling during pregnancy.
Usually, fetuses with Turner syndrome can be identified by abnormal ultrasound findings ("i.e.", heart defect, kidney abnormality, cystic hygroma, ascites). In a study of 19 European registries, 67.2% of prenatally diagnosed cases of Turner Syndrome were detected by abnormalities on ultrasound. 69.1% of cases had one anomaly present, and 30.9% had two or more anomalies.
An increased risk of Turner syndrome may also be indicated by abnormal triple or quadruple maternal serum screen. The fetuses diagnosed through positive maternal serum screening are more often found to
have a mosaic karyotype than those diagnosed based on ultrasonographic abnormalities, and
conversely, those with mosaic karyotypes are less likely to have associated ultrasound abnormalities.
Turner syndrome can be diagnosed postnatally at any age. Often, it is diagnosed at birth due to heart problems, an unusually wide neck or swelling of the hands and feet. However, it is also common for it to go undiagnosed for several years, typically until the girl reaches the age of puberty/adolescence and she fails to develop properly (the changes associated with puberty do not occur). In childhood, a short stature can be indicative of Turner syndrome.
A test called a karyotype, also known as a chromosome analysis, analyzes the chromosomal composition of the individual. This is the test of choice to diagnose Turner syndrome.
Fitzpatrick et al. (2007) identified 41 children with CVS. The mean age of the sample was 6 years at the onset of the syndrome, 8 years at first diagnosis, and 13 years at follow-up. As many as 39% of the children had resolution of symptoms immediately or within weeks of the diagnosis. Vomiting had resolved at the time of follow-up in 61% of the sample. Many children, including those in the remitted group, continued to have somatic symptoms such as headaches (in 42%) and abdominal pain (in 37%).
Most children who have this disorder miss on average 24 school days a year. The frequency of episodes is higher for some people during times of excitement. Charitable organizations to support sufferers and their families and to promote knowledge of CVS exist in several countries.
The cause of CVS has not been determined; there are no diagnostic tests for CVS. Several other medical conditions, such as cannabinoid hyperemesis syndrome, can mimic the same symptoms, and it is important to rule these out. If all other possible causes have been excluded, a diagnosis of CVS may be appropriate.
Once formal investigations to rule out gastrointestinal or other causes have been conducted, these tests do not need to be repeated in the event of future episodes.
A diagnosis is made by measuring the enzymatic activity of alpha--mannosidase in white blood cells. If there is a decreased level of the enzyme in comparison to standard levels, a diagnosis can be made. It is thought that this disorder might be under-diagnosed for a few different reasons—the diagnosis is often made late in the disease's progression, symptoms are often mild, or the biochemical diagnosis does not yield conclusive results.
Although most recognized for its correlation with the onset of glaucoma, the malformation is not limited to the eye, as Axenfeld syndrome when associated with the PITX2 genetic mutation usually presents congenital malformations of the face, teeth, and skeletal system.
The most characteristic feature affecting the eye is a distinct corneal posterior arcuate ring, known as an "embryotoxon". The iris is commonly adherent to the Schwalbe's line (posterior surface of the cornea).
Diagnosis
One of the three known genetic mutations which cause Rieger Syndrome can be identified through genetic samples analysis. About 40% of Axenfeld-Rieger sufferers have displayed mutations in genes PITX2, FOXC1, and PAX6. The difference between Type 1, 2, and 3 Axenfeld Syndrome is the genetic cause, all three types display the same symptoms and abnormalities.
The OMIM classification is as follows:
Detection of any of these mutations can give patients a clear diagnosis and prenatal procedures such as preimplantation genetic diagnosis, Chorionic villus sampling and Amniocentesis can be offered to patients and prospective parents.
Danon disease was characterized by Moris Danon in 1981. Dr. Danon first described the disease in 2 boys with heart and skeletal muscle disease (muscle weakness), and intellectual disability.
The first case of Danon disease reported in the Middle East was a family diagnosed in the eastern region of United Arab Emirates with a new "LAMP2" mutation; discovered by the Egyptian cardiologist Dr. Mahmoud Ramadan the associate professor of Cardiology in Mansoura University (Egypt) after doing genetic analysis for all the family members in Bergamo, Italy where 6 males were diagnosed as Danon disease patients and 5 female were diagnosed as carriers; as published in "Al-Bayan" newspaper in 20 February 2016 making this family the largest one with patients and carriers of Danon disease.
Danon Disease has overlapping symptoms with another rare genetic condition called 'Pompe' disease. Microscopically, muscles from Danon Disease patients appear similar to muscles from Pompe disease patients. However, intellectual disability is rarely, if ever, a symptom of Pompe disease. Negative enzymatic or molecular genetic testing for Pompe disease can help rule out this disorder as a differential diagnosis.
According to Clinicaltrials.gov, there are no current studies on hyperglycerolemia.
Clinicaltrials.gov is a service of the U.S. National Institutes of Health. Recent research shows patients with high concentrations of blood triglycerides have an increased risk of coronary heart disease. Normally, a blood glycerol test is not ordered. The research was about a child having elevated levels of triglycerides when in fact the child had glycerol kinase deficiency. This condition is known as pseudo-hypertriglyceridemia, a falsely elevated condition of triglycerides. Another group treated patients with elevated concentrations of blood triglycerides with little or no effect on reducing the triglycerides. A few laboratories can test for high concentrations of glycerol, and some laboratories can compare a glycerol-blanked triglycerides assay with the routine non-blanked method. Both cases show how the human body may exhibit features suggestive of a medical disorder when in fact it is another medical condition causing the issue.
It is associated with LAMP2. The status of this condition as a GSD has been disputed.
There is no cure for PMD, nor is there a standard course of treatment. Treatment, which is symptomatic and supportive, may include medication for seizures and spasticity. Regular evaluations by physical medicine and rehabilitation, orthopedic, developmental and neurologic specialists should be made to ensure optimal therapy and educational resources. The prognosis for those with Pelizaeus–Merzbacher disease is highly variable, with children with the most severe form (so-called connatal) usually not surviving to adolescence, but survival into the sixth or even seventh decades is possible, especially with attentive care. Genetic counseling should be provided to the family of a child with PMD.
In December 2008, StemCells Inc., a biotech company in Palo Alto, received clearance from the U.S. Food and Drug Administration (FDA) to conduct Phase I clinical trials in PMD to assess the safety of transplanting human neural stem cells as a potential treatment for PMD. The trial was initiated in November 2009 at the University of California, San Francisco (UCSF) Children's Hospital.
The life expectancy in alpha-mannosidosis is highly variable. Individuals with early onset severe disease often do not survive beyond childhood, whereas those with milder disorders may survive well into adult life.
Melkersson–Rosenthal syndrome may recur intermittently after its first appearance. It can become a chronic disorder. Follow-up care should exclude the development of Crohn's disease or sarcoidosis.
Congenital myasthenic syndromes (CMS) is "often difficult to diagnose because of a broad differential diagnosis and lack of specific laboratory findings. Identification of the underlying mutation is critical, as certain mutations lead to treatment-responsive conditions while others do not." Whole exome sequencing (WES) is often used as a diagnostic tool that allows for the "initiation of specific treatment".
Treatment depends on the form (category) of the disease. Although symptoms are similar to myasthenia gravis, treatments used in MG are not useful in CMS. MG is treated with immunosuppressants, but CMS is not an autoimmune disorder. Instead, CMS is genetic and responds to other forms of drug treatments.
A form of presynaptic CMS is caused by an insufficient release of acetylcholine (ACh) and is treated with cholinesterase inhibitors.
Postsynaptic fast-channel CMS (ACh receptors do not stay open long enough) is treated with cholinesterase inhibitors and 3,4-diaminopyridine. In the U.S., the more stable phosphate salt formulation of 3,4-diaminopyridine (amifampyridine phosphate) is under development as an orphan drug for CMS and is available to eligible patients at no cost under an expanded access program by Catalyst Pharmaceuticals.
Postsynaptic slow-channel CMS is treated with quinidine or fluoxetine, which plugs the ACh receptor.
Ephedrine has been tested on patients in clinical trials and appears to be an effective treatment for DOK7 CMS. Most patients tolerate this type of treatment and improvements in strength can be impressive. Further research must be done in order to determine the long-term response of ephedrine as well as the most effective dosage regimen. Ephedrine can lead to a profound improvement in muscle strength and an even more impressive effect on day-to-day function. The effect of ephedrine is delayed and the improvement occurs over a period of months. Ephedrine was given at doses between 15 and 90 mg/day and as a result, muscle strength improved
Hyperglycerolemia is caused by excess glycerol in the bloodstream. People with more severe cases of glycerol kinase deficiency may have a deletion of the GK gene that is large enough to see by routine cytogenetic evaluation. It has been found an x-linked recessive inheritance pattern of the trait when a study was conducted on a grandfather and grandson. In addition, there is a high prevalence of [diabetes mellitus] in this family. There is no known prevention for hyperglycerolemia because it is caused by a mutation or deletion of an individual's genetic code.
It is named after the German ophthalmologist Theodor Axenfeld who studied anterior segment disorders, especially those such as Rieger Syndrome and the Axenfeld Anomaly.
Axenfeld-Rieger syndrome is characterized by abnormalities of the eyes, teeth, and facial structure. Rieger Syndrome, by medical definition, is determined by the presence of malformed teeth, underdeveloped anterior segment of the eyes, and cardiac problems associated with the Axenfeld anomaly. The term "Rieger syndrome" is sometimes used to indicate an association with glaucoma. Glaucoma occurs in up to 50% of patients with Rieger Syndrome. Glaucoma develops during adolescence or late-childhood, but often occurs in infancy. In addition, a prominent Schwalbe's line, an opaque ring around the cornea known as posterior embryotoxon, may arise with hypoplasia of the iris. Below average height and stature, stunted development of the mid-facial features and mental deficiencies may also be observed in patients.
Overactive disorder associated with mental retardation and stereotyped movements is a pervasive developmental disorder (PDD) listed in Chapter V(F) of the tenth revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10); its diagnostic code is F84.4.