Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When diagnosing, PLF should be differentiated from Ménière's disease. Tympanostomy has been reported to be a way to diagnose and cure PLF.
The Valsalva maneuver increases middle ear pressure and can push a retracted eardrum out of the middle ear if is not adherent to middle ear structures. Hearing may improve as a result, however it can be a painful maneuver. The benefits are typically only temporary. Middle ear pressure can also be increased by Politzerization and with commercially available devices (e.g. Otovent and Ear Popper).
A ventilation tube, also known as a tympanostomy tube or a grommet, may be placed through the eardrum to equalize middle ear pressure. Although this intervention may be effective, research has not yet shown whether it provides better results than simple observation. Further weakness or perforation of the eardrum may occur.
If lesions are typical, non-extensive and with no detriment to hearing, investigation into the condition is rarely required. Audiometry is used to determine the extent of hearing loss, if any. Tympanometry produces tympanograms which can be different when tympanosclerosis is present. Computerised tomography (CT) can be used to determine if disease is present in the middle ear. Whilst hearing loss is a common symptom in many diseases of the ear, for example in otosclerosis (abnormal bone growth in the ear), the white, chalky patches on the tympanic membrane are fairly characteristic of tympanosclerosis. Cholesteatoma is similar in appearance but the whiteness is behind the tympanic membrane, rather than inside.
Most causes of conductive hearing loss can be identified by examination but if it is important to image the bones of the middle ear or inner ear then a CT scan is required. CT scan is useful in cases of congenital conductive hearing loss, chronic suppurative otitis media or cholesteatoma, ossicular damage or discontinuity, otosclerosis and third window dehiscence. Specific MRI scans can be used to identify cholesteatoma.
It is important that the patient attend periodic follow-up checks, because even after careful microscopic surgical removal, cholesteatomas may recur. Such recurrence may arise many years, or even decades, after treatment.
A "residual cholesteatoma" may develop if the initial surgery failed to completely remove the original; residual cholesteatomas typically become evident within the first few years after the initial surgery.
A "recurrent cholesteatoma" is a new cholesteatoma that develops when the underlying causes of the initial cholesteatoma are still present. Such causes can include, for example, poor eustachian tube function, which results in retraction of the ear drum, and failure of the normal outward migration of skin.
In a retrospective study of 345 patients with middle ear cholesteatoma operated on by the same surgeon, the overall 5-year recurrence rate was 11.8%. In a different study with a mean follow-up period of 7.3 years, the recurrence rate was 12.3%, with the recurrence rate being higher in children than in adults.
Patients are advised to treat with bed rest and avoiding activities that increase intracranial pressure (i.e. weightlifting, valsalva, scuba diving, flying in airplanes) with the hopes of the membrane healing on their own. Appropriate Physical therapy / vestibular rehabilitation techniques can be helpful in managing symptoms of movement sensitivity.
Tympanometry, or acoustic immitance testing, is a simple objective test of the ability of the middle ear to transmit sound waves across it. This test is usually abnormal with conductive hearing loss.
Long-term antibiotics, while they decrease rates of infection during treatment, have an unknown effect on long-term outcomes such as hearing loss. This method of prevention has been associated with emergence of antibiotic-resistant otitic bacteria. They are thus not recommended.
Pneumococcal conjugate vaccines (PCV) in early infancy, decreases the risk of acute otitis media in healthy infants. PCV is recommended for all children, and, if implemented broadly, PCV would have a significant public health benefit. Influenza vaccine is recommended annually for all children. PCV does not appear to decrease the risk of otitis media when given to high-risk infants or for older children who have previously experienced otitis media.
Risk factors such as season, allergy predisposition and presence of older siblings are known to be determinants of recurrent otitis media and persistent middle-ear effusions (MEE). History of recurrence, environmental exposure to tobacco smoke, use of daycare, and lack of breastfeeding have all been associated with increased risk of development, recurrence, and persistent MEE. Thus, cessation of smoking in the home should be encouraged, daycare attendance should be avoided or daycare facilities with the fewest attendees should be recommended, and breastfeeding should be promoted.
There is some evidence that breastfeeding for the first year of life is associated with a reduction in the number and duration of OM infections. Pacifier use, on the other hand, has been associated with more frequent episodes of AOM.
Evidence does not support zinc supplementation as an effort to reduce otitis rates except maybe in those with severe malnutrition such as marasmus.
Imaging is usually not pursued in those with uncomplicated conductive hearing loss and characteristic clinical findings. Those with only conductive hearing loss are often treated medically or with surgery without imaging. The diagnosis may be unclear clinically in cases of sensorineural or mixed hearing loss and may become apparent only on imaging. Therefore, imaging is often performed when the hearing loss is sensorineural or mixed.
A high-resolution CT shows very subtle bone findings. However, CT is usually not needed prior to surgery.
Otosclerosis on CT can be graded using the grading system suggested by Symons and Fanning.
- Grade 1, solely fenestral;
- Grade 2, patchy localized cochlear disease (with or without fenestral involvement) to either the basal cochlear turn (grade 2A), or the middle/apical turns (grade 2B), or both the basal turn and the middle/apical turns (grade 2C); and
- Grade 3, diffuse confluent cochlear involvement (with or without fenestral involvement).
The presence of dehiscence can be detected by a high definition (0.6 mm or less) coronal CT scan of the temporal bone, currently the most reliable way to distinguish between superior canal dehiscence syndrome (SCDS) and other conditions of the inner ear involving similar symptoms such as Ménière's disease and perilymphatic fistula. Other diagnostic tools include the vestibular evoked myogenic potential or VEMP test, videonystagmography (VNG), electrocochleography (ECOG) and the rotational chair test. An accurate diagnosis is of great significance as unnecessary exploratory middle ear surgery may thus be avoided. Several of the symptoms typical to SCDS (e.g. vertigo and Tullio) may also be present singly or as part of Ménière's disease, sometimes causing the one illness to be confused with the other. There are reported cases of patients being affected by both Ménière's disease and SCDS concurrently.
As SCDS is a very rare and still a relatively unknown condition, obtaining an accurate diagnosis of this distressing (and even disabling) disease may take some time as many health care professionals are not yet aware of its existence.
The diagnosis of mastoiditis is clinical—based on the medical history and physical examination. Imaging studies provide additional information; The standard method of diagnosis is via MRI scan although a CT scan is a common alternative as it gives a clearer and more useful image to see how close the damage may have gotten to the brain and facial nerves. Planar (2-D) X-rays are not as useful. If there is drainage, it is often sent for culture, although this will often be negative if the patient has begun taking antibiotics. Exploratory surgery is often used as a last resort method of diagnosis to see the mastoid and surrounding areas.
It is normally possible to establish the cause of ear pain based on the history. It is important to exclude cancer where appropriate, particularly with unilateral otalgia in an adult who uses tobacco or alcohol.Often migraines are caused by middle ear infections which can easily be treated with antibiotics. Often using a hot washcloth can temporarily relieve ear pain.
Hearing aids are a common treatment for hearing loss disorders. A more specific treatment is surgical, involving excision of the sclerotic areas and then further repair of the ossicular chain. There are several techniques, sometimes involving two surgeries; success rates are, however, variable. Damage to the inner ear as a result of surgical procedures is a possible and serious concern, as it can result in forms of sensorineural deafness.
Cholesteatoma is a persistent disease. Once the diagnosis of cholesteatoma is made in a patient who can tolerate a general anesthetic, the standard treatment is to surgically remove the growth.
The challenge of cholesteatoma surgery is to permanently remove the cholesteatoma whilst retaining or reconstructing the normal functions of the structures housed within the temporal bone.
The general objective of cholesteatoma surgery has two parts. It is both directed against the underlying pathology and directed towards maintaining the normal functions of the temporal bone. These aims are conflicting and this makes cholesteatoma surgery extremely challenging.
Sometimes, the situation results in a clash of surgical aims. The need to fully remove a progressive disease like cholesteatoma is the surgeon's first priority. Preservation of hearing is secondary to this primary aim. If the disease can be removed easily so that there is no increased risk of residual disease, then the ossicles may be preserved. If the disease is difficult to remove, so that there is an increased risk of residual disease, then removal of involved ossicles in order to fully clear cholesteatoma has generally been regarded as necessary and reasonable.
In other words, the aims of cholesteatoma treatment form a hierarchy. The paramount objective is the complete removal of cholesteatoma. The remaining objectives, such as hearing preservation, are subordinate to the need for complete removal of cholesteatoma. This hierarchy of aims has led to the development of a wide range of strategies for the treatment of cholesteatoma.
Once diagnosed, the gap in the temporal bone can be repaired by surgical resurfacing of the affected bone or plugging of the superior semicircular canal. These techniques are performed by accessing the site of the dehiscence either via a middle fossa craniotomy or via a canal drilled through the transmastoid bone behind the affected ear. Bone cement has been the material most often used, in spite of its tendency to slippage and resorption, and a consequent high failure rate; recently, soft tissue grafts have been substituted.
Adhesive otitis media occurs when a thin retracted ear drum becomes sucked into the middle-ear space and stuck (i.e., adherent) to the ossicles and other bones of the middle ear.
Treatment of otosclerosis can be understood basically under three heads : medical, surgical and amplification.
Management of ear pain depends on the underlying cause.Most cases of otitis media are self-limiting, resolving spontaneously without treatment within 3–5 days. Age-appropriate analgesics or a warm washcloth placed over the affected ear can help relieve pain until the infection has passed.In some cases ear pain has been treated successfully with manual therapy.
This may include a blood or other sera test for inflammatory markers such as those for autoinflammatory diseases.
While there is no cure, most people with tinnitus get used to it over time; for a minority, it remains a significant problem.
If the examination reveals a bruit (sound due to turbulent blood flow), imaging studies such as transcranial doppler (TCD) or magnetic resonance angiography (MRA) should be performed.
As part of differential diagnosis, an MRI scan may be done to check for vascular anomalies, tumors, and structural problems like enlarged mastoids. MRI and other types of scan cannot directly detect or measure age-related hearing loss.
With prompt treatment, it is possible to cure mastoiditis. Seeking medical care early is important. However, it is difficult for antibiotics to penetrate to the interior of the mastoid process and so it may not be easy to cure the infection; it also may recur. Mastoiditis has many possible complications, all connected to the infection spreading to surrounding structures. Hearing loss is likely, or inflammation of the labyrinth of the inner ear (labyrinthitis) may occur, producing vertigo and an ear ringing may develop along with the hearing loss, making it more difficult to communicate. The infection may also spread to the facial nerve (cranial nerve VII), causing facial-nerve palsy, producing weakness or paralysis of some muscles of facial expression, on the same side of the face. Other complications include Bezold's abscess, an abscess (a collection of pus surrounded by inflamed tissue) behind the sternocleidomastoid muscle in the neck, or a subperiosteal abscess, between the periosteum and mastoid bone (resulting in the typical appearance of a protruding ear). Serious complications result if the infection spreads to the brain. These include meningitis (inflammation of the protective membranes surrounding the brain), epidural abscess (abscess between the skull and outer membrane of the brain), dural venous thrombophlebitis (inflammation of the venous structures of the brain), or brain abscess.
The diagnostic criteria as of 2015 define definite MD and probable MD as follows:
Definite
1. Two or more spontaneous episodes of vertigo, each lasting 20 minutes to 12 hours
2. Audiometrically documented low- to medium-frequency sensorineural hearing loss in the affected ear on at least 1 occasion before, during, or after one of the episodes of vertigo
3. Fluctuating aural symptoms (hearing, tinnitus, or fullness) in the affected ear
4. Not better accounted for by another vestibular diagnosis
Probable
1. Two or more episodes of vertigo or dizziness, each lasting 20 minutes to 24 hours
2. Fluctuating aural symptoms (hearing, tinnitus, or fullness) in the reported ear
3. Not better accounted for by another vestibular diagnosis
A common and important symptom of MD is hypersensitivity to sounds. This hypersensitivity is easily diagnosed by measuring the loudness discomfort levels (LDLs).
Symptoms of MD overlap with migraine-associated vertigo (MAV) in many ways, but when hearing loss develops in MAV is usually in both ears, and this is rare in MD, and hearing loss generally does not progress in MAV as it does in MD.
People who have had a transient ischemic attack (TIA) and stroke can present with symptoms similar to MD, and in people at risk for stroke magnetic resonance imaging (MRI) should be conducted to exclude TIA or stroke, and as TIA is often a precursor to stroke, that risk should be managed.
Other vestibular conditions that should be excluded include vestibular paroxysmia, recurrent unilateral vestibulopathy, vestibular schwannoma, or a tumor of the endolymphatic sac.