Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of ALS2-related disorders includes physical therapy and occupational therapy to promote mobility and independence and use of computer technologies and devices to facilitate writing and voice communication.
"The phenotypic parameters that define a ciliopathy may be used to both recognize the cellular basis of a number of genetic disorders and to facilitate the diagnosis and treatment of some diseases of unknown" cause.
Erythromelalgia is a difficult condition to diagnose as there are no specific tests available. However, reduced capillary density has been observed microscopically during flaring; and reduced capillary perfusion is noted in the patient. Another test that can be done is to have the patient elevate their legs, and note the reversal (from red to pale) in skin color. Tests done at universities include quantitative sensory nerve testing, laser evoked potentials, sweat testing and epidermal sensory nerve fiber density test (which is an objective test for small fiber sensory neuropathy). Due the aforementioned factors, patients may face delays in diagnosis.
Once it has been established that it is not secondary erythromelalgia — see below — a programme of management can be put in place.
Some diseases present with symptoms similar to erythromelalgia. Complex regional pain syndrome (CRPS), for instance, presents with severe burning pain and redness except these symptoms are often unilateral (versus symmetric) and may be proximal instead of purely or primarily distal. Furthermore, attacks triggered by heat and resolved by cooling are less common with CRPS.
Erythromelalgia is sometimes caused by other disorders. A partial list of diseases known to precipitate erythromelalgia is below.
Juvenile Primary Lateral Sclerosis is inherited in an autosomal recessive pattern, which means two copies of the gene in each cell are altered. Most often, parents of affected individuals each carry one copy of the altered gene, but do not show any signs or symptoms.
Mutations in the ALS2 gene, found on Chromosome 2, are responsible for causing Juvenile Primary Lateral Sclerosis. The ALS2 gene provides instructions for making a protein called alsin. Alsin is abundant in motor neurons, but its function is not fully understood. Mutations in the ALS2 gene in this disorder disrupt the instructions for producing alsin. As a result, alsin is unstable and decays rapidly, or it is disabled and cannot function properly. It is currently unknown how the loss of functional alsin protein causes the death of motor neurons and the symptoms of juvenile primary lateral sclerosis.
A ciliopathy is a genetic disorder of the cellular cilia or the cilia anchoring structures, the basal bodies, or of ciliary function.
Although ciliopathies are usually considered to involve proteins that localize to motile and/or immotile (primary) cilia or centrosomes, it is possible for ciliopathies to be associated with proteins such as XPNPEP3, which localizes to mitochondria but is believed to affect ciliary function through proteolytic cleavage of ciliary proteins.
Significant advances in understanding the importance of cilia were made beginning in the mid-1990s. However, the physiological role that this organelle plays in most tissues remains elusive. Additional studies of how ciliary dysfunction can lead to such severe disease and developmental pathologies is a subject of current research.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
The major differential to consider in empty sella syndrome is intracranial hypertension, of both unknown and secondary causes, and an epidermoid cyst, which can mimic cerebrospinal fluid due to its low density on CT scans, although MRI can usually distinguish the latter diagnosis.
For secondary erythromelalgia, treatment of the underlying primary disorder is the most primary method of treatment. Although aspirin has been thought to reduce symptoms of erythromelalgia, it is rare to find evidence that this is effective. Mechanical cooling of the limbs by elevating them can help or managing the ambient environment frequently is often necessary constantly as flares occur due to sympathetic autonomic dysfunction of the capillaries. The pain that accompanies it is severe and treated separately (the pain is similar to CRPS, phantom limb or thalamic pain syndrome). Patients are strongly advised "not" to place the affected limbs in cold water to relieve symptoms when flaring occurs. It may seem a good idea, but it precipitates problems further down the line causing damage to the skin and ulceration often intractable due to the damaged skin. A possible reduction in skin damage may be accomplished by enclosing the flaring limb in a commonly available, thin, heat transparent, water impermeable, plastic food storage bag. The advice of a physician is advised depending on specific circumstances.
Primary erythromelalgia management is symptomatic, i.e. treating painful symptoms only. Specific management tactics include avoidance of attack triggers such as: heat, change in temperature, exercise or over exertion, alcohol and spicy foods. This list is by no means comprehensive as there are many triggers to set off a 'flaring' episode that are inexplicable. Whilst a cool environment is helpful in keeping the symptoms in control, the use of cold water baths is strongly discouraged. In pursuit of added relief sufferers can inadvertently cause tissue damage or death, i.e. necrosis. See comments at the end of the preceding paragraph regarding possible effectiveness of plastic food storage bags to avoid/reduce negative effects of submersion in cold water baths.
One clinical study has demonstrated the efficacy of IV lidocaine or oral mexilitine, though it should be noted that differences between the primary and secondary forms were not studied. Another trial has shown promise for misoprostol, while other have shown that gabapentin, venlafaxine and oral magnesium may also be effective, but no further testing was carried out as newer research superseded this combination.
Strong anecdotal evidence from EM patients shows that a combination of drugs such as duloxetine and pregabalin is an effective way of reducing the stabbing pains and burning sensation symptoms of erythromelalgia in conjunction with the appropriate analgesia. In some cases, antihistamines may give some relief. Most people with erythromelalgia never go into remission and the symptoms are ever present at some level, whilst others get worse, or the EM is eventually a symptom of another disease such as systemic scleroderma.
Some suffering with EM are prescribed ketamine topical creams as a way of managing pain on a long term basis. Feedback from some EM patients has led to reduction in usage as they believe it is only effective for short periods.
Living with erythromelalgia can result in a deterioration in quality of life resulting in the inability to function in a work place, lack of mobility, depression, and is socially alienating; much greater education of medical practitioners is needed. As with many rare diseases, many people with EM end up taking years to get a diagnosis and to receive appropriate treatment.
Research into the genetic mutations continues but there is a paucity of clinical studies focusing on living with erythromelalgia. There is much urgency within pharmaceutical companies to provide a solution to those who suffer with pain such as that with erythromelalgia.
The diagnosis of ESS, done via examination (and test), may be linked to early onset of puberty, growth hormone deficiency or pituitary gland dysfunction(at an early age). Additionally there is:
In 2016 the United States Preventive Services Task Force concluded that testing the general population under the age of 40 without symptoms is of unclear benefit.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Causes a ‘white reflex’ in the affected eye (leukocoria), prompting further investigation.
Primary lymphedema is a form of lymphedema which is not directly attributable to another medical condition.
It can be divided into three forms, depending upon age of onset: congenital lymphedema, lymphedema praecox, and lymphedema tarda.
Congenital lymphedema presents at birth. Lymphedema praecox presents from ages 1 to 35. This type of lymphedema accounts for 77–94% of all cases of primary lymphedema. Lymphedema tarda presents after age 35. This type of lymphedema usually develops as a result of a developmental abnormality being precipitated by some insult such as trauma, illness, or physical immobility. Compared to secondary lymphedema, primary lymphedema is more likely to involve the face, conjunctiva, and genitalia in association with any limbs involved.
It can be familial.
Persistent hyperplastic primary vitreous (PHPV), also known as Persistent Fetal Vasculature (PFV), is a rare congenital developmental anomaly of the eye that results
following failure of the embryological, primary vitreous and hyaloid vasculature to regress. It can be present in three forms: purely anterior (persistent tunica vasculosa lentis and persistent posterior fetal fibrovascular sheath of the lens), purely posterior (falciform retinal septum and ablatio falcicormis congenita) and a combination of both. Most examples of PHPV are unilateral and non-hereditary. When bilateral, PHPV may follow an autosomal recessive or autosomal dominant inheritance pattern.
Primary autonomic failure (also called primary dysautonomia) refers to a category of dysautonomias -- conditions in which the autonomic nervous system does not function properly.
In primary dysautonomias, the autonomic dysfunction occurs as a primary condition (as opposed to resulting from another disease). Autonomic failure is categorized as "primary" when believed to result from a chronic condition characterized by degeneration of the autonomic nervous system, or where autonomic failure is the predominant symptom and its cause is unknown.
Such "primary" dysautonomias are distinguished from secondary dysautonomias, where the dysfunction of the autonomic nervous system is believed to be caused by another disease (e.g. diabetes).
Diseases categorized as primary autonomic failure usually include pure autonomic failure and multiple system atrophy. Many scientists also categorize Parkinson disease and familial dysautonomia as "primary".
The main therapeutic approach to primary hyperoxaluria is still restricted to symptomatic treatment, i.e. kidney transplantation once the disease has already reached mature or terminal stages. However, through genomics and proteomics approaches, efforts are currently being made to elucidate the kinetics of AGXT folding which has a direct bearing on its targeting to appropriate subcellular localization. Secondary hyperoxaluria is much more common than primary hyperoxaluria, and should be treated by limiting dietary oxalate and providing calcium supplementation. A child with primary hyperoxaluria was treated with a liver and kidney transplant. A favorable outcome is more likely if a kidney transplant is complemented by a liver transplant, given the disease originates in the liver.
Regardless of location, all rhabdoid tumours are highly aggressive, have a poor prognosis, and tend to occur in children less than two years of age.
In terms of diagnosis of "humoral immune deficiency" depends upon the following:
- Measure "serum immunoglobulin levels"
- B cell count
- Family medical history
It is important to distinguish Raynaud's "disease" (primary Raynaud's) from "phenomenon" (secondary Raynaud's). Looking for signs of arthritis or vasculitis as well as a number of laboratory tests may separate them. If suspected to be secondary to systemic sclerosis, one tool which may help aid in the prediction of systemic sclerosis is thermography.
A careful medical history will often reveal whether the condition is primary or secondary. Once this has been established, an examination is largely to identify or exclude possible secondary causes.
- Digital artery pressure: pressures are measured in the arteries of the fingers before and after the hands have been cooled. A decrease of at least 15 mmHg is diagnostic (positive).
- Doppler ultrasound: to assess blood flow.
- Full blood count: this may reveal a normocytic anaemia suggesting the anaemia of chronic disease or renal failure.
- Blood test for urea and electrolytes: this may reveal renal impairment.
- Thyroid function tests: this may reveal hypothyroidism.
- An autoantibody screen, tests for rheumatoid factor, Erythrocyte sedimentation rate, and C-reactive protein, which may reveal specific causative illnesses or a generalised inflammatory process.
- Nail fold vasculature: this can be examined under the microscope.
To aid in the diagnosis of Raynaud's phenomenon, multiple sets of diagnostic criteria have been proposed. Table 1 below provides a summary of these various diagnostic criteria.
Recently, International Consensus Criteria were developed for the diagnosis of primary Raynaud's phenomenon by a panel of multiple experts in the fields of rheumatology and dermatology.
Monofixation syndrome (MFS) (also: microtropia or microstrabismus) is an eye condition defined by less-than-perfect binocular vision. It is defined by a small angle deviation with suppression of the deviated eye and the presence of binocular peripheral fusion. That is, MFS implies peripheral fusion without central fusion.
Aside the manifest small-angle deviation ("tropia"), subjects with MFS often also have a large-angle latent deviation ("phoria"). Their stereoacuity is often in the range of 3000 to 70 arcsecond, and a small central suppression scotoma of 2 to 5 deg.
A rare condition, MFS is estimated to affect only 1% of the general population. There are three distinguishable forms of this condition: primary constant, primary decompensating, and consecutive MFS. It is believed that primary MFS is a result of a primary sensorial defect, predisposing to anomalous retinal correspondence.
Secondary MFS is a frequent outcome of surgical treatment of congenital esotropia. A study of 1981 showed MFS to result in the vast majority of cases if surgical alignment is reached before the age of 24 months and only in a minority of cases if it is reached later.
MFS was first described by Marshall Parks.
The histologic diagnosis of malignant rhabdoid tumour depends on identification of characteristic rhabdoid cells—large cells with eccentrically located nuclei and abundant, eosinophilic cytoplasm. However, the histology can be heterogeneous and the diagnosis of MRT can often be difficult. Misclassifications can occur.
In MRTs, the INI1 gene (SMARCB1)on chromosome 22q functions as a classic tumour suppressor gene. Inactivation of INI1 can occur via deletion, mutation, or acquired UPD.
In a recent study, SNP array karyotyping identified deletions or LOH of 22q in 49/51 rhabdoid tumours. Of these, 14 were copy neutral LOH (or acquired UPD), which is detectable by SNP array karyotyping, but not by FISH, cytogenetics, or arrayCGH. MLPA detected a single exon homozygous deletion in one sample that was below the resolution of the SNP array. SNP array karyotyping can be used to distinguish, for example, a medulloblastoma with an isochromosome 17q from a primary rhabdoid tumour with loss of 22q11.2. When indicated, molecular analysis of INI1 using MLPA and direct sequencing may then be employed. Once the tumour-associated changes are found, an analysis of germline DNA from the patient and the parents can be done to rule out an inherited or de novo germline mutation or deletion of INI1, so that appropriate recurrence risk assessments can be made.
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy
Suggested diagnostic criteria for cryoglobulinemic disease fall into the following obligatory and additional categories:
- Obligatory criteria: 1) cold sensitivity; 2) cutaneous symptoms (i.e. urticaria, purpura, Raynaud phenomenon, ulceration/necrosis/gangrene, and/or livedo reticularis); 3) arterial and/or venous thrombotic events; fever; 4) arthralgia/myalgia; 5) neuritis in >1 site; and 6) renal disorder.
- Additional criteria: 1) typical biopsy findings at site(s) of involvement and 2) angiogram evidence of occlusion in one or more small to medium sized arteries.
The diagnosis of secondary cryofibrinogenemia also requires evidence for the cited infectious, malignant, premalignant vasculitis, and autoimmune disorders while the diagnosis of primary cryofibriongenemia requires a lack of evidence for 1) the cited associated disorders, 2) other vascular occlusive diseases, and 3) cryoglobulinemia.
Primary hyperaldosteronism can be mimicked by Liddle syndrome, and by ingestion of licorice and other foods containing glycyrrhizin. In one case report, hypertension and quadriparesis resulted from intoxication with a non-alcoholic pastis (an anise-flavored aperitif containing glycyrrhizinic acid).
Perhaps the key difficulty in understanding pathogenesis of primary hyperoxaluria, or more specifically, why AGXT ends up in mitochondria instead of peroxisomes, stems from AGXT's somewhat peculiar evolution. Namely, prior to its current peroxysomal 'destiny', AGXT indeed used to be bound to mitochondria. AGXT's peroxisomal targeting sequence is uniquely specific for mammalian species, suggesting the presence of additional peroxisomal targeting information elsewhere in the AGT molecule. As AGXT was redirected to peroxisomes over the course of evolution, it is plausible that its current aberrant localization to mitochondria owes to some hidden molecular signature in AGXT's spatial configuration unmasked by PH1 mutations affecting the AGXT gene.